These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 12496163)

  • 1. Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages.
    Cox GM; Harrison TS; McDade HC; Taborda CP; Heinrich G; Casadevall A; Perfect JR
    Infect Immun; 2003 Jan; 71(1):173-80. PubMed ID: 12496163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryptococcus neoformans mitochondrial superoxide dismutase: an essential link between antioxidant function and high-temperature growth.
    Giles SS; Batinic-Haberle I; Perfect JR; Cox GM
    Eukaryot Cell; 2005 Jan; 4(1):46-54. PubMed ID: 15643059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH.
    Fu MS; Coelho C; De Leon-Rodriguez CM; Rossi DCP; Camacho E; Jung EH; Kulkarni M; Casadevall A
    PLoS Pathog; 2018 Jun; 14(6):e1007144. PubMed ID: 29906292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urease as a virulence factor in experimental cryptococcosis.
    Cox GM; Mukherjee J; Cole GT; Casadevall A; Perfect JR
    Infect Immun; 2000 Feb; 68(2):443-8. PubMed ID: 10639402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial Cu,Zn-superoxide dismutase mediates pulmonary fibrosis by augmenting H2O2 generation.
    He C; Murthy S; McCormick ML; Spitz DR; Ryan AJ; Carter AB
    J Biol Chem; 2011 Apr; 286(17):15597-607. PubMed ID: 21393238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of endogenous free radicals is required to induce titan-like cell formation in
    García-Barbazán I; Torres-Cano A; García-Rodas R; Sachse M; Luque D; Megías D; Zaragoza O
    mBio; 2024 Jan; 15(1):e0254923. PubMed ID: 38078728
    [No Abstract]   [Full Text] [Related]  

  • 7. Distinct pathways of adaptive evolution in Cryptococcus neoformans reveal a mutation in adenylyl cyclase with trade-offs for pathogenicity.
    Hilbert ZA; Bednarek JM; Schwiesow MJW; Chung KY; Moreau CT; Brown JCS; Elde NC
    Curr Biol; 2023 Oct; 33(19):4136-4149.e9. PubMed ID: 37708888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fungal Pathogens: Survival and Replication within Macrophages.
    Gilbert AS; Wheeler RT; May RC
    Cold Spring Harb Perspect Med; 2014 Nov; 5(7):a019661. PubMed ID: 25384769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence.
    Ding C; Festa RA; Chen YL; Espart A; Palacios Ò; Espín J; Capdevila M; Atrian S; Heitman J; Thiele DJ
    Cell Host Microbe; 2013 Mar; 13(3):265-76. PubMed ID: 23498952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryptococcal interactions with the host immune system.
    Voelz K; May RC
    Eukaryot Cell; 2010 Jun; 9(6):835-46. PubMed ID: 20382758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans.
    Liu OW; Chun CD; Chow ED; Chen C; Madhani HD; Noble SM
    Cell; 2008 Oct; 135(1):174-88. PubMed ID: 18854164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription factor-driven alternative localization of Cryptococcus neoformans superoxide dismutase.
    Smith AD; Garcia-Santamarina S; Ralle M; Loiselle DR; Haystead TA; Thiele DJ
    J Biol Chem; 2021; 296():100391. PubMed ID: 33567338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a High-Affinity Copper Transporter in the White-Nose Syndrome Causing Fungal Pathogen
    Friudenberg AD; Anne S; Peterson RL
    bioRxiv; 2024 Aug; ():. PubMed ID: 39253504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Cross-Kingdom DDA- and DIA-PASEF Proteomic Profiling Reveals Novel Determinants of Fungal Virulence and a Putative Druggable Target.
    Ball B; Sukumaran A; Krieger JR; Geddes-McAlister J
    J Proteome Res; 2024 Sep; 23(9):3917-3932. PubMed ID: 39140824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. With age comes resilience: how mitochondrial modulation drives age-associated fluconazole tolerance in
    Yoo K; Bhattacharya S; Oliveira NK; Pereira de Sa N; Matos GS; Del Poeta M; Fries BC
    mBio; 2024 Sep; 15(9):e0184724. PubMed ID: 39136442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retracing the evolution of
    Cissé OH; Ma L; Kovacs JA
    Microbiol Mol Biol Rev; 2024 Jun; 88(2):e0020222. PubMed ID: 38587383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Response of
    Silva LOS; Baeza LC; Pigosso LL; Silva KSFE; Pereira M; de Carvalho Júnior MAB; de Almeida Soares CM
    J Fungi (Basel); 2023 Nov; 9(11):. PubMed ID: 37998893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolving the Temporal Splenic Proteome during Fungal Infection for Discovery of Putative Dual Perspective Biomarker Signatures.
    Muselius B; Roux-Dalvai F; Droit A; Geddes-McAlister J
    J Am Soc Mass Spectrom; 2023 Sep; 34(9):1928-1940. PubMed ID: 37222660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the Long-Term Tissue Accumulation and Excretion of 3 nm Cerium Oxide Nanoparticles after Single Dose Administration.
    Ernst LM; Mondragón L; Ramis J; Gustà MF; Yudina T; Casals E; Bastús NG; Fernández-Varo G; Casals G; Jiménez W; Puntes V
    Antioxidants (Basel); 2023 Mar; 12(3):. PubMed ID: 36979013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Dynamics of
    Freitas GJC; Gouveia-Eufrasio L; Emidio ECP; Carneiro HCS; de Matos Baltazar L; Costa MC; Frases S; de Sousa Araújo GR; Paixão TA; Sossai BG; Caza M; Kronstad JW; Peres NTA; Santos DA
    Cells; 2022 Dec; 11(23):. PubMed ID: 36497155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.