These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 12496174)

  • 1. Entry of the lymphogranuloma venereum strain of Chlamydia trachomatis into host cells involves cholesterol-rich membrane domains.
    Jutras I; Abrami L; Dautry-Varsat A
    Infect Immun; 2003 Jan; 71(1):260-6. PubMed ID: 12496174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural studies on the intracellular fate of Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) and Chlamydia trachomatis (strain lymphogranuloma venereum 434): modulation of intracellular events and relationship with endocytic mechanism.
    Prain CJ; Pearce JH
    J Gen Microbiol; 1989 Jul; 135(7):2107-23. PubMed ID: 2614396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid rafts, caveolae, caveolin-1, and entry by Chlamydiae into host cells.
    Stuart ES; Webley WC; Norkin LC
    Exp Cell Res; 2003 Jul; 287(1):67-78. PubMed ID: 12799183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attachment and internalization of a Chlamydia trachomatis lymphogranuloma venereum strain by McCoy cells: kinetics of infectivity and effect of lectins and carbohydrates.
    Söderlund G; Kihlström E
    Infect Immun; 1983 Dec; 42(3):930-5. PubMed ID: 6642670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep comparative genomics among Chlamydia trachomatis lymphogranuloma venereum isolates highlights genes potentially involved in pathoadaptation.
    Borges V; Gomes JP
    Infect Genet Evol; 2015 Jun; 32():74-88. PubMed ID: 25745888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the cytochalasin D-resistant (pinocytic) mechanisms of endocytosis utilized by chlamydiae.
    Reynolds DJ; Pearce JH
    Infect Immun; 1990 Oct; 58(10):3208-16. PubMed ID: 2119341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobilization of F-actin and clathrin during redistribution of Chlamydia trachomatis to an intracellular site in eucaryotic cells.
    Majeed M; Kihlström E
    Infect Immun; 1991 Dec; 59(12):4465-72. PubMed ID: 1937805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adherence of multiple serovars of Chlamydia trachomatis to a common receptor on HeLa and McCoy cells is mediated by thermolabile protein(s).
    Vretou E; Goswami PC; Bose SK
    J Gen Microbiol; 1989 Dec; 135(12):3229-37. PubMed ID: 2636258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recruitment of BAD by the Chlamydia trachomatis vacuole correlates with host-cell survival.
    Verbeke P; Welter-Stahl L; Ying S; Hansen J; Häcker G; Darville T; Ojcius DM
    PLoS Pathog; 2006 May; 2(5):e45. PubMed ID: 16710454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of a mutant Chinese hamster ovary cell line that is resistant to Chlamydia trachomatis infection at a novel step in the attachment process.
    Carabeo RA; Hackstadt T
    Infect Immun; 2001 Sep; 69(9):5899-904. PubMed ID: 11500469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: mechanisms of endocytosis.
    Ward ME; Murray A
    J Gen Microbiol; 1984 Jul; 130(7):1765-80. PubMed ID: 6470672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis.
    Wylie JL; Hatch GM; McClarty G
    J Bacteriol; 1997 Dec; 179(23):7233-42. PubMed ID: 9393685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in susceptibilities of the lymphogranuloma venereum and trachoma biovars of Chlamydia trachomatis to neutralization by immune sera.
    Peterson EM; Hoshiko M; Markoff BA; Lauermann MW; de la Maza LM
    Infect Immun; 1990 Apr; 58(4):938-43. PubMed ID: 2318536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relation of basic biology to pathogenic potential in the genus Chlamydia.
    Moulder JW
    Infection; 1982; 10 Suppl 1():S10-8. PubMed ID: 7044979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changing Pattern of Chlamydia trachomatis Strains in Lymphogranuloma Venereum Outbreak, France, 2010-2015.
    Peuchant O; Touati A; Sperandio C; Hénin N; Laurier-Nadalié C; Bébéar C; de Barbeyrac B
    Emerg Infect Dis; 2016 Nov; 22(11):1945-1947. PubMed ID: 27767927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trachoma and LGV biovars of Chlamydia trachomatis share the same glycosaminoglycan-dependent mechanism for infection of eukaryotic cells.
    Chen JC; Stephens RS
    Mol Microbiol; 1994 Feb; 11(3):501-7. PubMed ID: 8152374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development.
    Hall JV; Sun J; Slade J; Kintner J; Bambino M; Whittimore J; Schoborg RV
    Front Cell Infect Microbiol; 2014; 4():158. PubMed ID: 25414835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell death, BAX activation, and HMGB1 release during infection with Chlamydia.
    Jungas T; Verbeke P; Darville T; Ojcius DM
    Microbes Infect; 2004 Nov; 6(13):1145-55. PubMed ID: 15488733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of caveolin with Chlamydia trachomatis inclusions at early and late stages of infection.
    Norkin LC; Wolfrom SA; Stuart ES
    Exp Cell Res; 2001 Jun; 266(2):229-38. PubMed ID: 11399051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association of Helicobacter pylori vacuolating toxin (VacA) with lipid rafts.
    Schraw W; Li Y; McClain MS; van der Goot FG; Cover TL
    J Biol Chem; 2002 Sep; 277(37):34642-50. PubMed ID: 12121984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.