These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 12496454)

  • 1. A lamellar model for the X-ray rocking curves of sagittally bent Laue crystals.
    Zhong Z; Kao CC; Siddons DP; Zhong H; Hastings JB
    Acta Crystallogr A; 2003 Jan; 59(Pt 1):1-6. PubMed ID: 12496454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rocking-curve width of sagittally bent Laue crystals.
    Zhong Z; Kao CC; Siddons DP; Hastings JB
    Acta Crystallogr A; 2002 Sep; 58(Pt 5):487-93. PubMed ID: 12192122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fixed-exit monochromators for high-energy synchrotron radiation.
    Suortti P; Schulze C
    J Synchrotron Radiat; 1995 Jan; 2(Pt 1):6-12. PubMed ID: 16714780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-treated self-standing curved crystals as high-efficiency elements for X- and γ-ray optics: theory and experiment.
    Bonnini E; Buffagni E; Zappettini A; Doyle S; Ferrari C
    J Appl Crystallogr; 2015 Jun; 48(Pt 3):666-671. PubMed ID: 26089758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement and models of bent KAP(001) crystal integrated reflectivity and resolution (invited).
    Loisel GP; Wu M; Stolte W; Kruschwitz C; Lake P; Dunham GS; Bailey JE; Rochau GA
    Rev Sci Instrum; 2016 Nov; 87(11):11D502. PubMed ID: 27910652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfocusing of hard X-rays with cylindrically bent crystal monochromators.
    Schulze C; Lienert U; Hanfland M; Lorenzen M; Zontone F
    J Synchrotron Radiat; 1998 Mar; 5(Pt 2):77-81. PubMed ID: 16687807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-space matching between bent Laue and flat Bragg crystals.
    Zhong Z; Hasnah M; Broadbent A; Dooryhee E; Lucas M
    J Synchrotron Radiat; 2019 Nov; 26(Pt 6):1917-1923. PubMed ID: 31721734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance calculations of the X-ray powder diffraction beamline at NSLS-II.
    Shi X; Ghose S; Dooryhee E
    J Synchrotron Radiat; 2013 Mar; 20(Pt 2):234-42. PubMed ID: 23412479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffraction properties of cylindrically bent KAP crystals in energy range of 2.3-7.5  keV using synchrotron radiation.
    Wu M; Kruschwitz CA; Lake P; Loisel GP; Bailey JE; Stolte WC
    Appl Opt; 2021 Jan; 60(3):558-570. PubMed ID: 33690429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of X-ray plane-wave rocking curves on the deviation from exact Bragg orientation in and perpendicular to the diffraction plane for the asymmetrical Laue case.
    Balyan MK
    Acta Crystallogr A Found Adv; 2018 May; 74(Pt 3):204-215. PubMed ID: 29724966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray reflectivity of chemically vapor-deposited diamond single crystals in the Laue geometry.
    Stoupin S; Ruff JPC; Krawczyk T; Finkelstein KD
    Acta Crystallogr A Found Adv; 2018 Sep; 74(Pt 5):567-577. PubMed ID: 30182943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An X-ray Raman spectrometer for EXAFS studies on minerals: bent Laue spectrometer with 20 keV X-rays.
    Hiraoka N; Fukui H; Tanida H; Toyokawa H; Cai YQ; Tsuei KD
    J Synchrotron Radiat; 2013 Mar; 20(Pt 2):266-71. PubMed ID: 23412483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring and predicting the diffraction properties of cylindrically bent potassium acid phthalate, KAP(001), crystals.
    Haugh MJ; Jacoby KD
    Rev Sci Instrum; 2017 Feb; 88(2):023113. PubMed ID: 28249466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray Laue diffraction by sectioned multilayers. I. Pendellösung effect and rocking curves.
    Punegov VI
    J Synchrotron Radiat; 2021 Sep; 28(Pt 5):1466-1475. PubMed ID: 34475294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures.
    Hong X; Ehm L; Zhong Z; Ghose S; Duffy TS; Weidner DJ
    Sci Rep; 2016 Feb; 6():21434. PubMed ID: 26902122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical focusing by bent, asymmetrically cut perfect crystals in Laue geometry.
    Guigay JP; Ferrero C
    Acta Crystallogr A Found Adv; 2016 Jul; 72(Pt 4):489-99. PubMed ID: 27357851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal bending in triple-Laue X-ray interferometry. Part I. Theory.
    Sasso CP; Mana G; Massa E
    J Appl Crystallogr; 2023 Jun; 56(Pt 3):707-715. PubMed ID: 37284270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An accurate theory of X-ray coplanar multiple SRMS diffractometry.
    Kohn VG
    Acta Crystallogr A Found Adv; 2018 Nov; 74(Pt 6):673-680. PubMed ID: 30378578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and on-line adjustment of the sagittal-bent Laue crystal profile.
    Dong W; Cai Q; Yang F; Liu X; Yang J; Diao Q; Liu P; Zhang X; Hu L
    J Synchrotron Radiat; 2018 Sep; 25(Pt 5):1346-1353. PubMed ID: 30179172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bent perfect crystals as X-ray focusing polychromators in symmetric Laue geometry.
    Guigay JP; Ferrero C; Bhattacharyya D; Mathon O; Pascarelli S
    Acta Crystallogr A; 2013 Jan; 69(Pt 1):91-7. PubMed ID: 23250065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.