BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 12496758)

  • 1. Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop.
    Seidel-Rogol BL; McCulloch V; Shadel GS
    Nat Genet; 2003 Jan; 33(1):23-4. PubMed ID: 12496758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational analysis of the conserved bases C1402 and A1500 in the center of the decoding domain of Escherichia coli 16 S rRNA reveals an important tertiary interaction.
    Vila-Sanjurjo A; Dahlberg AE
    J Mol Biol; 2001 May; 308(3):457-63. PubMed ID: 11327780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photolabile oligoDNA probes of internal Escherichia coli ribosomal structure.
    Cooperman BS; Alexander RW; Muralikrishna P
    Nucleic Acids Symp Ser; 1995; (33):59-62. PubMed ID: 8643399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of Escherichia coli ribosomal protein S8 and its binding site in 16S ribosomal RNA.
    Uma K; Nikonowicz EP; Kaluarachchi K; Wu H; Wower IK; Zimmermann RA
    Nucleic Acids Symp Ser; 1995; (33):8-10. PubMed ID: 8643407
    [No Abstract]   [Full Text] [Related]  

  • 5. The aminoglycoside resistance methyltransferase Sgm impedes RsmF methylation at an adjacent rRNA nucleotide in the ribosomal A site.
    Cubrilo S; Babić F; Douthwaite S; Maravić Vlahovicek G
    RNA; 2009 Aug; 15(8):1492-7. PubMed ID: 19509304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. tRNA/mRNA/rRNA interactions in the Escherichia coli ribosomal decoding site with and without bound aminoglycoside.
    VanLoock MS; Easterwood TR; Harvey SC
    Nucleic Acids Symp Ser; 1997; (36):68. PubMed ID: 9478209
    [No Abstract]   [Full Text] [Related]  

  • 7. Impairing methylations at ribosome RNA, a point mutation-dependent strategy for aminoglycoside resistance: the rsmG case.
    Benítez-Páez A; Cárdenas-Brito S; Corredor M; Villarroya M; Armengod ME
    Biomedica; 2014 Apr; 34 Suppl 1():41-9. PubMed ID: 24968035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of kasugamycin resistant mutants in the 16 S ribosomal RNA of Escherichia coli.
    Vila-Sanjurjo A; Squires CL; Dahlberg AE
    J Mol Biol; 1999 Oct; 293(1):1-8. PubMed ID: 10512710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What do we know about ribosomal RNA methylation in Escherichia coli?
    Sergeeva OV; Bogdanov AA; Sergiev PV
    Biochimie; 2015 Oct; 117():110-8. PubMed ID: 25511423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for an early gene duplication event in the evolution of the mitochondrial transcription factor B family and maintenance of rRNA methyltransferase activity in human mtTFB1 and mtTFB2.
    Cotney J; Shadel GS
    J Mol Evol; 2006 Nov; 63(5):707-17. PubMed ID: 17031457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA sequence determinants for aminoglycoside binding to an A-site rRNA model oligonucleotide.
    Recht MI; Fourmy D; Blanchard SC; Dahlquist KD; Puglisi JD
    J Mol Biol; 1996 Oct; 262(4):421-36. PubMed ID: 8893854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Pathogen-Derived Aminoglycoside Resistance 16S rRNA Methyltransferase NpmA Possesses Dual m1A1408/m1G1408 Specificity.
    Zelinskaya N; Witek MA; Conn GL
    Antimicrob Agents Chemother; 2015 Dec; 59(12):7862-5. PubMed ID: 26416864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides.
    Doi Y; Arakawa Y
    Clin Infect Dis; 2007 Jul; 45(1):88-94. PubMed ID: 17554708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. YccW is the m5C methyltransferase specific for 23S rRNA nucleotide 1962.
    Purta E; O'Connor M; Bujnicki JM; Douthwaite S
    J Mol Biol; 2008 Nov; 383(3):641-51. PubMed ID: 18786544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence-based approach for detecting and characterizing antibiotic-induced conformational changes in ribosomal RNA: comparing aminoglycoside binding to prokaryotic and eukaryotic ribosomal RNA sequences.
    Kaul M; Barbieri CM; Pilch DS
    J Am Chem Soc; 2004 Mar; 126(11):3447-53. PubMed ID: 15025471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of the residues C770 and G771 of E. coli 16S rRNA implicated in forming the intersubunit bridge B2c of the ribosome.
    Kim HM; Yeom JH; Ha HJ; Kim JM; Lee K
    J Microbiol Biotechnol; 2007 Jul; 17(7):1204-7. PubMed ID: 18051334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elongation arrest by SecM via a cascade of ribosomal RNA rearrangements.
    Mitra K; Schaffitzel C; Fabiola F; Chapman MS; Ban N; Frank J
    Mol Cell; 2006 May; 22(4):533-43. PubMed ID: 16713583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylation of the conserved A1518-A1519 in Escherichia coli 16S ribosomal RNA by the ksgA methyltransferase is influenced by methylations around the similarly conserved U1512.G1523 base pair in the 3' terminal hairpin.
    Formenoy LJ; Cunningham PR; Nurse K; Pleij CW; Ofengand J
    Biochimie; 1994; 76(12):1123-8. PubMed ID: 7538324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the 16S rRNA m5C967 methyltransferase from Escherichia coli.
    Gu XR; Gustafsson C; Ku J; Yu M; Santi DV
    Biochemistry; 1999 Mar; 38(13):4053-7. PubMed ID: 10194318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constraining ribosomal RNA conformational space.
    Favaretto P; Bhutkar A; Smith TF
    Nucleic Acids Res; 2005; 33(16):5106-11. PubMed ID: 16155182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.