These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 12497183)

  • 21. Long-term manipulations of intact microbial mat communities in a greenhouse collaboratory: simulating earth's present and past field environments.
    Bebout BM; Carpenter SP; Des Marais DJ; Discipulo M; Embaye T; Garcia-Pichel F; Hoehler TM; Hogan M; Jahnke LL; Keller RM; Miller SR; Prufert-Bebout LE; Raleigh C; Rothrock M; Turk K
    Astrobiology; 2002; 2(4):383-402. PubMed ID: 12593778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The structure and biogeochemical activity of the phototrophic communities from the Bol'sherechenskii alkaline hot spring].
    Namsaraev ZB; Gorlenko VM; Namsaraev BB; Buriukhaev SP; Iurkov VV
    Mikrobiologiia; 2003; 72(2):228-38. PubMed ID: 12751248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyanobacterial reuse of extracellular organic carbon in microbial mats.
    Stuart RK; Mayali X; Lee JZ; Craig Everroad R; Hwang M; Bebout BM; Weber PK; Pett-Ridge J; Thelen MP
    ISME J; 2016 May; 10(5):1240-51. PubMed ID: 26495994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Allelopathy-mediated competition in microbial mats from Antarctic lakes.
    Slattery M; Lesser MP
    FEMS Microbiol Ecol; 2017 May; 93(5):. PubMed ID: 28334326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acid microenvironments in microbial biofilms of antarctic endolithic microecosystems.
    de los Ríos A; Wierzchos J; Sancho LG; Ascaso C
    Environ Microbiol; 2003 Apr; 5(4):231-7. PubMed ID: 12662170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Versatile cyanobacteria control the timing and extent of sulfide production in a Proterozoic analog microbial mat.
    Klatt JM; Gomez-Saez GV; Meyer S; Ristova PP; Yilmaz P; Granitsiotis MS; Macalady JL; Lavik G; Polerecky L; Bühring SI
    ISME J; 2020 Dec; 14(12):3024-3037. PubMed ID: 32770117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ecological succession leads to chemosynthesis in mats colonizing wood in sea water.
    Kalenitchenko D; Dupraz M; Le Bris N; Petetin C; Rose C; West NJ; Galand PE
    ISME J; 2016 Sep; 10(9):2246-58. PubMed ID: 26905628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic.
    Vincent WF; Mueller DR; Bonilla S
    Cryobiology; 2004 Apr; 48(2):103-12. PubMed ID: 15094087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Morphological responses to nitrogen stress deficiency of a new heterotrophic isolated strain of Ebro Delta microbial mats.
    Villagrasa E; Ferrer-Miralles N; Millach L; Obiol A; Creus J; Esteve I; Solé A
    Protoplasma; 2019 Jan; 256(1):105-116. PubMed ID: 29987389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacterial and Archaeal Diversity in Hypersaline Cyanobacterial Mats Along a Transect in the Intertidal Flats of the Sultanate of Oman.
    Vogt JC; Abed RMM; Albach DC; Palinska KA
    Microb Ecol; 2018 Feb; 75(2):331-347. PubMed ID: 28736793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioremediation of oil by marine microbial mats.
    Cohen Y
    Int Microbiol; 2002 Dec; 5(4):189-93. PubMed ID: 12497184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional shifts in microbial mats recapitulate early Earth metabolic transitions.
    Gutiérrez-Preciado A; Saghaï A; Moreira D; Zivanovic Y; Deschamps P; López-García P
    Nat Ecol Evol; 2018 Nov; 2(11):1700-1708. PubMed ID: 30297749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments.
    Paerl HW; Pinckney JL; Steppe TF
    Environ Microbiol; 2000 Feb; 2(1):11-26. PubMed ID: 11243256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic theory predicts whole-ecosystem properties.
    Schramski JR; Dell AI; Grady JM; Sibly RM; Brown JH
    Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2617-22. PubMed ID: 25624499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The sponge holobiont in a changing ocean: from microbes to ecosystems.
    Pita L; Rix L; Slaby BM; Franke A; Hentschel U
    Microbiome; 2018 Mar; 6(1):46. PubMed ID: 29523192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extant Earthly Microbial Mats and Microbialites as Models for Exploration of Life in Extraterrestrial Mat Worlds.
    Biddanda B; Weinke A; Stone I; Kendall S; Hartmeyer P; Lusardi W; Gandulla S; Bright J; Ruberg S
    Life (Basel); 2021 Aug; 11(9):. PubMed ID: 34575032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fungal communities of young and mature hypersaline microbial mats.
    Cantrell SA; Tkavc R; Gunde-Cimerman N; Zalar P; Acevedo M; Báez-Félix C
    Mycologia; 2013; 105(4):827-36. PubMed ID: 23709488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics.
    Ruvindy R; White RA; Neilan BA; Burns BP
    ISME J; 2016 Jan; 10(1):183-96. PubMed ID: 26023869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization.
    Kobayashi T; Li YY; Kubota K; Harada H; Maeda T; Yu HQ
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):847-57. PubMed ID: 21735263
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Eukaryotes in Arctic and Antarctic cyanobacterial mats.
    Jungblut AD; Vincent WF; Lovejoy C
    FEMS Microbiol Ecol; 2012 Nov; 82(2):416-28. PubMed ID: 22630054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.