BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 12498198)

  • 1. Simulation and optimization of retention in ion chromatography using virtual column 2 software.
    Madden JE; Shaw MJ; Dicinoski GW; Avdalovic N; Haddad PR
    Anal Chem; 2002 Dec; 74(23):6023-30. PubMed ID: 12498198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of ion chromatography columns based on hydrophobicity and hydroxide eluent strength.
    Liang C; Lucy CA
    J Chromatogr A; 2010 Dec; 1217(52):8154-60. PubMed ID: 21106199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical comparison of retention models for the optimisation of the separation of anions in ion chromatography. II. Suppressed anion chromatography using carbonate eluents.
    Madden JE; Haddad PR
    J Chromatogr A; 1999 Jul; 850(1-2):29-41. PubMed ID: 10457463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retention prediction of low molecular weight anions in ion chromatography based on quantitative structure-retention relationships applied to the linear solvent strength model.
    Park SH; Haddad PR; Talebi M; Tyteca E; Amos RI; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():68-75. PubMed ID: 28057331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced methodology for porting ion chromatography retention data.
    Park SH; Shellie RA; Dicinoski GW; Schuster G; Talebi M; Haddad PR; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2016 Mar; 1436():59-63. PubMed ID: 26860051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hard modeling of ion chromatography separations on hydroxide-selective stationary phase.
    Drgan V; Novic M; Pihlar B; Novic M
    J Chromatogr A; 2008 Mar; 1185(1):109-16. PubMed ID: 18289555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Column selection for comprehensive multidimensional ion chromatography.
    Shellie RA; Tyrrell E; Pohl CA; Haddad PR
    J Sep Sci; 2008 Oct; 31(19):3287-96. PubMed ID: 18803256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of inorganic anions in environmental waters with a hydroxide-selective column.
    Jackson PE; Weigert C; Pohl CA; Saini C
    J Chromatogr A; 2000 Jul; 884(1-2):175-84. PubMed ID: 10917436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppressed anion chromatography using mixed zwitter-ionic and carbonate eluents.
    Chen Y; Jing L; Li X; Zhu Y
    J Chromatogr A; 2006 Jun; 1118(1):3-11. PubMed ID: 16458910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of the effects of methanol and competing ion concentration on retention in the ion chromatographic separation of anionic and cationic pharmaceutically related compounds.
    Zakaria P; Dicinoski G; Hanna-Brown M; Haddad PR
    J Chromatogr A; 2010 Sep; 1217(39):6069-76. PubMed ID: 20732686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Latex-coated polymeric monolithic ion-exchange stationary phases. 2. Micro-ion chromatography.
    Zakaria P; Hutchinson JP; Avdalovic N; Liu Y; Haddad PR
    Anal Chem; 2005 Jan; 77(2):417-23. PubMed ID: 15649036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of retention times for anions in linear gradient elution ion chromatography with hydroxide eluents using artificial neural networks.
    Madden JE; Avdalovic N; Haddad PR; Havel J
    J Chromatogr A; 2001 Feb; 910(1):173-9. PubMed ID: 11263571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional ion chromatography using tandem ion-exchange columns with gradient-pulse column switching.
    Johns C; Shellie RA; Pohl CA; Haddad PR
    J Chromatogr A; 2009 Oct; 1216(41):6931-7. PubMed ID: 19732899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methodology for porting retention prediction data from old to new columns and from conventional-scale to miniaturised ion chromatography systems.
    Ng BK; Shellie RA; Dicinoski GW; Bloomfield C; Liu Y; Pohl CA; Haddad PR
    J Chromatogr A; 2011 Aug; 1218(32):5512-9. PubMed ID: 21741652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional ion chromatography for the separation of ionic organophosphates generated in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes.
    Kraft V; Grützke M; Weber W; Menzel J; Wiemers-Meyer S; Winter M; Nowak S
    J Chromatogr A; 2015 Aug; 1409():201-9. PubMed ID: 26209196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography.
    Park SH; Talebi M; Amos RIJ; Tyteca E; Haddad PR; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Nov; 1523():173-182. PubMed ID: 28291517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Column and Eluent Fluorination on the Retention and Separation of non-Fluorinated Amino Acids and Proteins by HPLC.
    Joyner K; Wang W; Yu YB
    J Fluor Chem; 2011 Feb; 132(2):114-122. PubMed ID: 21318121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of retention modelling to the simulation of separation of organic anions in suppressed ion chromatography.
    Zakaria P; Dicinoski GW; Ng BK; Shellie RA; Hanna-Brown M; Haddad PR
    J Chromatogr A; 2009 Sep; 1216(38):6600-10. PubMed ID: 19683244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peak distortion effects in analytical ion chromatography.
    Wahab MF; Anderson JK; Abdelrady M; Lucy CA
    Anal Chem; 2014 Jan; 86(1):559-66. PubMed ID: 24328391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal ion chromatography method for anions in active pharmaceutical ingredients enabled by computer-assisted separation modeling.
    Yuan T; Merai D; Gunsch MJ; Peters R; Lohani S; Bernardoni F; Zompa MA; Ahmad IH; Regalado EL; Pohl CA
    J Pharm Biomed Anal; 2024 Apr; 241():115923. PubMed ID: 38244392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.