BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 12498209)

  • 1. Application of an absorption-based surface plasmon resonance principle to the development of SPR ammonium ion and enzyme sensors.
    Fujii E; Koike T; Nakamura K; Sasaki S; Kurihara K; Citterio D; Iwasaki Y; Niwa O; Suzuki K
    Anal Chem; 2002 Dec; 74(23):6106-10. PubMed ID: 12498209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode membrane.
    Kurihara K; Nakamura K; Hirayama E; Suzuki K
    Anal Chem; 2002 Dec; 74(24):6323-33. PubMed ID: 12510755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Table top surface plasmon resonance measurement system for efficient urea biosensing using ZnO thin film matrix.
    Paliwal A; Tomar M; Gupta V
    J Biomed Opt; 2016 Aug; 21(8):87006. PubMed ID: 27552310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Measurement of Urea Concentration With an In-Fiber SPR-MZI Sensor.
    Cheng L; Zheng W; Zhang YN; Li X; Zhao Y
    IEEE Trans Nanobioscience; 2024 Jul; 23(3):403-409. PubMed ID: 38722715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme biosensor for urea based on a novel pH bulk optode membrane.
    Koncki R; Mohr GJ; Wolfbeis OS
    Biosens Bioelectron; 1995; 10(8):653-9. PubMed ID: 7576433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach for simultaneous sensing of urea and glucose by SPR based optical fiber multianalyte sensor.
    Verma R; Gupta BD
    Analyst; 2014 Mar; 139(6):1449-55. PubMed ID: 24492310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amperometric ammonium ion and urea determination with enzyme-based probes.
    Bertocchi P; Compagnone D; Palleschi G
    Biosens Bioelectron; 1996; 11(1-2):1-10. PubMed ID: 8600914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann's theory.
    Kurihara K; Suzuki K
    Anal Chem; 2002 Feb; 74(3):696-701. PubMed ID: 11838698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An enzyme-chromogenic surface plasmon resonance biosensor probe for hydrogen peroxide determination using a modified Trinder's reagent.
    Nakamura H; Mogi Y; Akimoto T; Naemura K; Kato T; Yano K; Karube I
    Biosens Bioelectron; 2008 Nov; 24(3):455-60. PubMed ID: 18550356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging.
    Gobi KV; Tanaka H; Shoyama Y; Miura N
    Biosens Bioelectron; 2004 Sep; 20(2):350-7. PubMed ID: 15308241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing efficient zero calibration point for phase-sensitive surface plasmon resonance biosensing.
    Patskovsky S; Vallieres M; Maisonneuve M; Song IH; Meunier M; Kabashin AV
    Opt Express; 2009 Feb; 17(4):2255-63. PubMed ID: 19219129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Urea and creatinine detection on nano-laminated gold thin film using Kretschmann-based surface plasmon resonance biosensor.
    Menon PS; Said FA; Mei GS; Berhanuddin DD; Umar AA; Shaari S; Majlis BY
    PLoS One; 2018; 13(7):e0201228. PubMed ID: 30052647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase sensitive SPR sensor for wide dynamic range detection.
    Huang YH; Ho HP; Wu SY; Kong SK; Wong WW; Shum P
    Opt Lett; 2011 Oct; 36(20):4092-4. PubMed ID: 22002396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection.
    Siqueira JR; Molinnus D; Beging S; Schöning MJ
    Anal Chem; 2014 Jun; 86(11):5370-5. PubMed ID: 24814256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fiber-optic surface plasmon resonance sensors in the near-infrared spectral region.
    Masson JF; Kim YC; Obando LA; Peng W; Booksh KS
    Appl Spectrosc; 2006 Nov; 60(11):1241-6. PubMed ID: 17132440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical enzyme sensor for urea determination via immobilized pH indicator and urease onto transparent membranes.
    Krysteva M; Al Hallak M
    ScientificWorldJournal; 2003 Jul; 3():585-92. PubMed ID: 12847295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization.
    Bardin F; Bellemain A; Roger G; Canva M
    Biosens Bioelectron; 2009 Mar; 24(7):2100-5. PubMed ID: 19084391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical biosensor for urea with improved response time.
    Kovács B; Nagy G; Dombi R; Tóth K
    Biosens Bioelectron; 2003 Mar; 18(2-3):111-8. PubMed ID: 12485757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of ex situ and in situ spectral surface plasmon resonance sensors in the analysis of protein arrays.
    Yuk JS; Jung JW; Jung SH; Han JA; Kim YM; Ha KS
    Biosens Bioelectron; 2005 May; 20(11):2189-96. PubMed ID: 15797315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of hydrophobic nanoparticles for real-time lysozyme detection using surface plasmon resonance sensor.
    Saylan Y; Yılmaz F; Derazshamshir A; Yılmaz E; Denizli A
    J Mol Recognit; 2017 Sep; 30(9):. PubMed ID: 28322473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.