BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12498231)

  • 1. Sub-second liquid chromatographic separations by means of shear-driven chromatography.
    Clic D; Vervoort N; Vounckx R; Ottevaere H; Buijs J; Gooijer C; Ariese F; Baron GV; Desmet G
    J Chromatogr A; 2002 Dec; 979(1-2):33-42. PubMed ID: 12498231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of 120-nm deep channels for liquid chromatographic separations.
    Fekete V; Clicq D; De Malsche W; Gardeniers H; Desmet G
    J Chromatogr A; 2008 May; 1189(1-2):2-9. PubMed ID: 18037427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Van Deemter plots of shear-driven liquid chromatographic separations in disposable microchannels.
    Vervoort N; Clicq D; Baron GV; Desmet G
    J Chromatogr A; 2003 Feb; 987(1-2):39-48. PubMed ID: 12613795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous silicon as a stationary phase for shear-driven chromatography.
    Clicq D; Tjerkstra RW; Gardeniers JG; van den Berg A; Baron GV; Desmet G
    J Chromatogr A; 2004 Apr; 1032(1-2):185-91. PubMed ID: 15065795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-rapid separation of an angiotensin mixture in nanochannels using shear-driven chromatography.
    Vankrunkelsven S; Clicq D; Cabooter D; De Malsche W; Gardeniers JG; Desmet G
    J Chromatogr A; 2006 Jan; 1102(1-2):96-103. PubMed ID: 16257004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method transfer for fast liquid chromatography in pharmaceutical analysis: application to short columns packed with small particle. Part I: isocratic separation.
    Guillarme D; Nguyen DT; Rudaz S; Veuthey JL
    Eur J Pharm Biopharm; 2007 Jun; 66(3):475-82. PubMed ID: 17267188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency of methacrylate monolithic columns in reversed-phase liquid chromatographic separations.
    Huo Y; Schoenmakers PJ; Kok WT
    J Chromatogr A; 2007 Dec; 1175(1):81-8. PubMed ID: 18001748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the possibility of shear-driven chromatography: a theoretical performance analysis.
    Desmet G; Baron GV
    J Chromatogr A; 1999 Sep; 855(1):57-70. PubMed ID: 10514973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of elution profiles in liquid chromatography - II: Investigation of injection volume overload under gradient elution conditions applied to second dimension separations in two-dimensional liquid chromatography.
    Stoll DR; Sajulga RW; Voigt BN; Larson EJ; Jeong LN; Rutan SC
    J Chromatogr A; 2017 Nov; 1523():162-172. PubMed ID: 28747254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast-liquid chromatography using columns of different internal diameters packed with sub-2 μm silica particles.
    D'Orazio G; Rocco A; Fanali S
    J Chromatogr A; 2012 Mar; 1228():213-20. PubMed ID: 21665212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method transfer for fast liquid chromatography in pharmaceutical analysis: application to short columns packed with small particle. Part II: gradient experiments.
    Guillarme D; Nguyen DT; Rudaz S; Veuthey JL
    Eur J Pharm Biopharm; 2008 Feb; 68(2):430-40. PubMed ID: 17703929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive kinetic optimisation of hydrophilic interaction chromatography × reversed phase liquid chromatography separations: Experimental verification and application to phenolic analysis.
    Muller M; Tredoux AGJ; de Villiers A
    J Chromatogr A; 2018 Oct; 1571():107-120. PubMed ID: 30100525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instrument platforms for nano liquid chromatography.
    Šesták J; Moravcová D; Kahle V
    J Chromatogr A; 2015 Nov; 1421():2-17. PubMed ID: 26265002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of titania monoliths for chromatographic separations.
    Randon J; Guerrin JF; Rocca JL
    J Chromatogr A; 2008 Dec; 1214(1-2):183-6. PubMed ID: 19010481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing the peak capacity per unit time in one-dimensional and off-line two-dimensional liquid chromatography for the separation of complex peptide samples.
    Eeltink S; Dolman S; Swart R; Ursem M; Schoenmakers PJ
    J Chromatogr A; 2009 Oct; 1216(44):7368-74. PubMed ID: 19285679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-fast high-efficiency enantioseparations by means of a teicoplanin-based chiral stationary phase made on sub-2 μm totally porous silica particles of narrow size distribution.
    Ismail OH; Ciogli A; Villani C; De Martino M; Pierini M; Cavazzini A; Bell DS; Gasparrini F
    J Chromatogr A; 2016 Jan; 1427():55-68. PubMed ID: 26687167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the speed limits of liquid chromatography using shear-driven flows through 45 and 85 nm deep nano-channels.
    De Bruyne S; De Malsche W; Fekete V; Thienpont H; Ottevaere H; Gardeniers H; Desmet G
    Analyst; 2013 Oct; 138(20):6127-33. PubMed ID: 23965574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of novel amylose and cellulose-based chiral stationary phases for the stereoisomer separation of flavanones by means of nano-liquid chromatography.
    Si-Ahmed K; Aturki Z; Chankvetadze B; Fanali S
    Anal Chim Acta; 2012 Aug; 738():85-94. PubMed ID: 22790704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on azaspiracid biotoxins. I. Ultrafast high-resolution liquid chromatography/mass spectrometry separations using monolithic columns.
    Volmer DA; Brombacher S; Whitehead B
    Rapid Commun Mass Spectrom; 2002; 16(24):2298-305. PubMed ID: 12478575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impulse-driven heated-droplet deposition interface for capillary and microbore LC-MALDI MS and MS/MS.
    Young JB; Li L
    Anal Chem; 2007 Aug; 79(15):5927-34. PubMed ID: 17605467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.