These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 12498575)
1. A micromodel analysis of factors influencing NAPL removal by surfactant foam flooding. Jeong SW; Corapcioglu MY J Contam Hydrol; 2003 Jan; 60(1-2):77-96. PubMed ID: 12498575 [TBL] [Abstract][Full Text] [Related]
2. Force analysis and visualization of NAPL removal during surfactant-related floods in a porous medium. Jeong SW; Corapcioglu MY J Hazard Mater; 2005 Nov; 126(1-3):8-13. PubMed ID: 16054295 [TBL] [Abstract][Full Text] [Related]
3. Etched glass micromodel for laboratory simulation of NAPL recovery mechanisms by surfactant solutions in fractured rock. Martel R; Portois C; Robert T; Uyeda M J Contam Hydrol; 2019 Dec; 227():103550. PubMed ID: 31493908 [TBL] [Abstract][Full Text] [Related]
4. Use of a surfactant-stabilized emulsion to deliver 1-butanol for density-modified displacement of trichloroethene. Ramsburg CA; Pennell KD; Kibbey TC; Hayes KF Environ Sci Technol; 2003 Sep; 37(18):4246-53. PubMed ID: 14524460 [TBL] [Abstract][Full Text] [Related]
5. Applications of ultrasound in NAPL remediation: sonochemical degradation of TCE in aqueous surfactant solutions. Destaillats H; Alderson TW; Hoffmann MR Environ Sci Technol; 2001 Jul; 35(14):3019-24. PubMed ID: 11478257 [TBL] [Abstract][Full Text] [Related]
6. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: direct observation and quantification. Wang Q; Jeong SW; Choi H J Hazard Mater; 2012 Apr; 213-214():299-310. PubMed ID: 22386819 [TBL] [Abstract][Full Text] [Related]
7. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater. Mateas DJ; Tick GR; Carroll KC J Contam Hydrol; 2017 Sep; 204():40-56. PubMed ID: 28780996 [TBL] [Abstract][Full Text] [Related]
8. The photodegradation of trichloroethylene with or without the NAPL by UV irradiation in surfactant solutions. Jia J; Chu W J Hazard Mater; 2009 Jan; 161(1):196-201. PubMed ID: 18455298 [TBL] [Abstract][Full Text] [Related]
9. Effect of nonionic surfactant partitioning on the dissolution kinetics of residual perchloroethylene in a model porous medium. Sharmin R; Ioannidis MA; Legge RL J Contam Hydrol; 2006 Jan; 82(1-2):145-64. PubMed ID: 16274842 [TBL] [Abstract][Full Text] [Related]
10. Hindered gas-phase partitioning of trichloroethylene from aqueous cyclodextrin systems: implications for treatment and analysis. Kashiyama N; Boving TB Environ Sci Technol; 2004 Aug; 38(16):4439-44. PubMed ID: 15382875 [TBL] [Abstract][Full Text] [Related]
11. Chemical structure influence on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux. Padgett MC; Tick GR; Carroll KC; Burke WR J Contam Hydrol; 2017 Mar; 198():11-23. PubMed ID: 28202180 [TBL] [Abstract][Full Text] [Related]
12. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments. Kim H; Ahn D; Annable MD J Contam Hydrol; 2016 Jan; 184():25-34. PubMed ID: 26697745 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the use of capillary numbers for quantifying the removal of DNAPL trapped in a porous medium by surfactant and surfactant foam floods. Jeong SW J Colloid Interface Sci; 2005 Feb; 282(1):182-7. PubMed ID: 15576097 [TBL] [Abstract][Full Text] [Related]
14. In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties. Schroth MH; Oostrom M; Wietsma TW; Istok JD J Contam Hydrol; 2001 Jul; 50(1-2):79-98. PubMed ID: 11475162 [TBL] [Abstract][Full Text] [Related]
15. Removal of trichloroethylene from waste gases via the peroxone process. Van Craeynest K; Dewulf J; Vandeburie S; Van Langenhove H Water Sci Technol; 2003; 48(3):65-72. PubMed ID: 14518856 [TBL] [Abstract][Full Text] [Related]
16. A large-scale experiment on mass transfer of trichloroethylene from the unsaturated zone of a sandy aquifer to its interfaces. Jellali S; Benremita H; Muntzer P; Razakarisoa O; Schäfer G J Contam Hydrol; 2003 Jan; 60(1-2):31-53. PubMed ID: 12498573 [TBL] [Abstract][Full Text] [Related]
17. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process. Salehi MM; Safarzadeh MA; Sahraei E; Nejad SA J Pet Sci Eng; 2014 Aug; 120():86-93. PubMed ID: 26594096 [TBL] [Abstract][Full Text] [Related]
18. Density-modified displacement for DNAPL source zone remediation: density conversion and recovery in heterogeneous aquifer cells. Ramsburg CA; Pennell KD Environ Sci Technol; 2002 Jul; 36(14):3176-87. PubMed ID: 12141501 [TBL] [Abstract][Full Text] [Related]
19. TCE recovery mechanisms using micellar and alcohol solutions: phase diagrams and sand column experiments. St-Pierre C; Martel R; Gabriel U; Lefebvre R; Robert T; Hawari J J Contam Hydrol; 2004 Jul; 71(1-4):155-92. PubMed ID: 15145566 [TBL] [Abstract][Full Text] [Related]
20. Effect of NAPL Source Morphology on Mass Transfer in the Vadose Zone. Petri BG; Fučík R; Illangasekare TH; Smits KM; Christ JA; Sakaki T; Sauck CC Ground Water; 2015; 53(5):685-98. PubMed ID: 25535651 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]