These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 12498628)

  • 1. Bioavailability of minerals in legumes.
    Sandberg AS
    Br J Nutr; 2002 Dec; 88 Suppl 3():S281-5. PubMed ID: 12498628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of food processing on phytate hydrolysis and availability of iron and zinc.
    Sandberg AS
    Adv Exp Med Biol; 1991; 289():499-508. PubMed ID: 1654732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of vegetable protein sources on trace element and mineral bioavailability.
    Hurrell RF
    J Nutr; 2003 Sep; 133(9):2973S-7S. PubMed ID: 12949395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can sprouting reduce phytate and improve the nutritional composition and nutrient bioaccessibility in cereals and legumes?
    Elliott H; Woods P; Green BD; Nugent AP
    Nutr Bull; 2022 Jun; 47(2):138-156. PubMed ID: 36045098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains.
    Hemalatha S; Platel K; Srinivasan K
    Eur J Clin Nutr; 2007 Mar; 61(3):342-8. PubMed ID: 16969377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability.
    Gibson RS; Bailey KB; Gibbs M; Ferguson EL
    Food Nutr Bull; 2010 Jun; 31(2 Suppl):S134-46. PubMed ID: 20715598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the mechanisms affecting Cu and Fe bioavailability from legumes: role of seed protein and antinutritional (nonprotein) factors.
    Carbonaro M; Grant G; Mattera M; Aguzzi A; Pusztai A
    Biol Trace Elem Res; 2001; 84(1-3):181-96. PubMed ID: 11817688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening for anti-nutritional compounds in complementary foods and food aid products for infants and young children.
    Roos N; Sørensen JC; Sørensen H; Rasmussen SK; Briend A; Yang Z; Huffman SL
    Matern Child Nutr; 2013 Jan; 9 Suppl 1(Suppl 1):47-71. PubMed ID: 23167584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absorption studies show that phytase from Aspergillus niger significantly increases iron and zinc bioavailability from phytate-rich foods.
    Troesch B; Jing H; Laillou A; Fowler A
    Food Nutr Bull; 2013 Jun; 34(2 Suppl):S90-101. PubMed ID: 24050000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions.
    Nielsen AV; Meyer AS
    J Sci Food Agric; 2016 Aug; 96(11):3755-61. PubMed ID: 26678688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the bioavailability of nutrients in plant foods at the household level.
    Gibson RS; Perlas L; Hotz C
    Proc Nutr Soc; 2006 May; 65(2):160-8. PubMed ID: 16672077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentation of food and feed: A technology for efficient utilization of macro and trace elements in monogastrics.
    Humer E; Schedle K
    J Trace Elem Med Biol; 2016 Sep; 37():69-77. PubMed ID: 27012174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets.
    Hunt JR
    Am J Clin Nutr; 2003 Sep; 78(3 Suppl):633S-639S. PubMed ID: 12936958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing.
    Rousseau S; Kyomugasho C; Celus M; Hendrickx MEG; Grauwet T
    Crit Rev Food Sci Nutr; 2020; 60(5):826-843. PubMed ID: 30632768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting phytate-element interactions: implications for iron, zinc and calcium bioavailability, with emphasis on legumes.
    Zhang YY; Stockmann R; Ng K; Ajlouni S
    Crit Rev Food Sci Nutr; 2022; 62(6):1696-1712. PubMed ID: 33190514
    [No Abstract]   [Full Text] [Related]  

  • 16. Phytic acid interactions in food systems.
    Cheryan M
    Crit Rev Food Sci Nutr; 1980; 13(4):297-335. PubMed ID: 7002470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Plant Proteins Derived from Cereals and Legumes on Heme Iron Absorption.
    Weinborn V; Pizarro F; Olivares M; Brito A; Arredondo M; Flores S; Valenzuela C
    Nutrients; 2015 Oct; 7(11):8977-86. PubMed ID: 26529009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical, biochemical, and biological significance of polyphenols in cereals and legumes.
    Salunkhe DK; Jadhav SJ; Kadam SS; Chavan JK
    Crit Rev Food Sci Nutr; 1982; 17(3):277-305. PubMed ID: 6756791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of polyphenols in phytate-reduced high-tannin cereals: effect on different phenolic groups and on in vitro accessible iron.
    Matuschek E; Towo E; Svanberg U
    J Agric Food Chem; 2001 Nov; 49(11):5630-8. PubMed ID: 11714370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of Phytate in Soy Drink by Fermentation with Lactobacillus casei Expressing Phytases From Bifidobacteria.
    García-Mantrana I; Monedero V; Haros M
    Plant Foods Hum Nutr; 2015 Sep; 70(3):269-74. PubMed ID: 26003176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.