These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 12498976)

  • 1. Reversible S-glutathionylation of Cys 374 regulates actin filament formation by inducing structural changes in the actin molecule.
    Dalle-Donne I; Giustarini D; Rossi R; Colombo R; Milzani A
    Free Radic Biol Med; 2003 Jan; 34(1):23-32. PubMed ID: 12498976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The tert-butyl hydroperoxide-induced oxidation of actin Cys-374 is coupled with structural changes in distant regions of the protein.
    DalleDonne I; Milzani A; Colombo R
    Biochemistry; 1999 Sep; 38(38):12471-80. PubMed ID: 10493817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actin S-glutathionylation: evidence against a thiol-disulphide exchange mechanism.
    Dalle-Donne I; Rossi R; Giustarini D; Colombo R; Milzani A
    Free Radic Biol Med; 2003 Nov; 35(10):1185-93. PubMed ID: 14607517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathionylation of beta-actin via a cysteinyl sulfenic acid intermediary.
    Johansson M; Lundberg M
    BMC Biochem; 2007 Dec; 8():26. PubMed ID: 18070357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible glutathionylation regulates actin polymerization in A431 cells.
    Wang J; Boja ES; Tan W; Tekle E; Fales HM; English S; Mieyal JJ; Chock PB
    J Biol Chem; 2001 Dec; 276(51):47763-6. PubMed ID: 11684673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of intramolecular cross-linking between glutamine-41 and lysine-50 on actin structure and function.
    Eli-Berchoer L; Hegyi G; Patthy A; Reisler E; Muhlrad A
    J Muscle Res Cell Motil; 2000; 21(5):405-14. PubMed ID: 11129431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methionine oxidation as a major cause of the functional impairment of oxidized actin.
    Dalle-Donne I; Rossi R; Giustarini D; Gagliano N; Di Simplicio P; Colombo R; Milzani A
    Free Radic Biol Med; 2002 May; 32(9):927-37. PubMed ID: 11978495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic properties of actin. Structural changes induced by beryllium fluoride.
    Muhlrad A; Cheung P; Phan BC; Miller C; Reisler E
    J Biol Chem; 1994 Apr; 269(16):11852-8. PubMed ID: 8163484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of nucleotide- and F-actin-induced movements in the switch II helix of the skeletal myosin using its differential oxidative cleavage mediated by an iron-EDTA complex disulfide-linked to the strong actin binding site.
    Bertrand R; Capony JP; Derancourt J; Kassab R
    Biochemistry; 1999 Sep; 38(37):11914-25. PubMed ID: 10508394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New aspects of the spontaneous polymerization of actin in the presence of salts.
    Galińska-Rakoczy A; Wawro B; Strzelecka-Gołaszewska H
    J Mol Biol; 2009 Apr; 387(4):869-82. PubMed ID: 19340945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of subtilisin cleaved actin lacking the segment of residues 43-47 in the DNase I binding loop.
    Kiessling P; Jahn W; Maier G; Polzar B; Mannherz HG
    Biochemistry; 1995 Nov; 34(45):14834-42. PubMed ID: 7578093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the type of divalent cation, Ca2+ or Mg2+, bound at the high-affinity site and of the ionic composition of the solution on the structure of F-actin.
    Strzelecka-Golaszewska H; Wozniak A; Hult T; Lindberg U
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):713-21. PubMed ID: 8670143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of the tightly bound divalent-cation-dependent and nucleotide-dependent conformation changes in G-actin using limited proteolytic digestion.
    Strzelecka-Gołaszewska H; Moraczewska J; Khaitlina SY; Mossakowska M
    Eur J Biochem; 1993 Feb; 211(3):731-42. PubMed ID: 8436131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue.
    Reddy S; Jones AD; Cross CE; Wong PS; Van Der Vliet A
    Biochem J; 2000 May; 347 Pt 3(Pt 3):821-7. PubMed ID: 10769188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods to detect protein glutathionylation.
    Poerschke RL; Fritz KS; Franklin CC
    Curr Protoc Toxicol; 2013 Sep; 57():6.17.1-6.17.18. PubMed ID: 24510510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decline of contractility during ischemia-reperfusion injury: actin glutathionylation and its effect on allosteric interaction with tropomyosin.
    Chen FC; Ogut O
    Am J Physiol Cell Physiol; 2006 Mar; 290(3):C719-27. PubMed ID: 16251471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: implications for cytoskeletal integrity.
    Choong G; Liu Y; Xiao W; Templeton DM
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):423-30. PubMed ID: 23872096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-range conformational effects of proteolytic removal of the last three residues of actin.
    Strzelecka-Gołaszewska H; Mossakowska M; Woźniak A; Moraczewska J; Nakayama H
    Biochem J; 1995 Apr; 307 ( Pt 2)(Pt 2):527-34. PubMed ID: 7733893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the DNase-I-binding loop in dynamic properties of actin filament.
    Khaitlina SY; Strzelecka-Gołaszewska H
    Biophys J; 2002 Jan; 82(1 Pt 1):321-34. PubMed ID: 11751319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathionylation regulates IkappaB.
    Kil IS; Kim SY; Park JW
    Biochem Biophys Res Commun; 2008 Aug; 373(1):169-73. PubMed ID: 18555796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.