These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 12499376)
1. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. Amano M; Galvan M; He J; Baum LG J Biol Chem; 2003 Feb; 278(9):7469-75. PubMed ID: 12499376 [TBL] [Abstract][Full Text] [Related]
2. N- and O-glycans modulate galectin-1 binding, CD45 signaling, and T cell death. Earl LA; Bi S; Baum LG J Biol Chem; 2010 Jan; 285(4):2232-44. PubMed ID: 19920154 [TBL] [Abstract][Full Text] [Related]
3. Linkage-specific action of endogenous sialic acid O-acetyltransferase in Chinese hamster ovary cells. Shi WX; Chammas R; Varki A J Biol Chem; 1996 Jun; 271(25):15130-8. PubMed ID: 8662976 [TBL] [Abstract][Full Text] [Related]
4. Galectin-1-mediated cell adhesion, invasion and cell death in human anaplastic large cell lymphoma: regulatory roles of cell surface glycans. Suzuki O; Abe M Int J Oncol; 2014 May; 44(5):1433-42. PubMed ID: 24589677 [TBL] [Abstract][Full Text] [Related]
5. Increased alpha2,6 sialylation of N-glycans in a transgenic mouse model of hepatocellular carcinoma. Pousset D; Piller V; Bureaud N; Monsigny M; Piller F Cancer Res; 1997 Oct; 57(19):4249-56. PubMed ID: 9331085 [TBL] [Abstract][Full Text] [Related]
6. Alpha2,6-sialylation of cell-surface N-glycans inhibits glioma formation in vivo. Yamamoto H; Oviedo A; Sweeley C; Saito T; Moskal JR Cancer Res; 2001 Sep; 61(18):6822-9. PubMed ID: 11559557 [TBL] [Abstract][Full Text] [Related]
7. CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. Nguyen JT; Evans DP; Galvan M; Pace KE; Leitenberg D; Bui TN; Baum LG J Immunol; 2001 Nov; 167(10):5697-707. PubMed ID: 11698442 [TBL] [Abstract][Full Text] [Related]
8. Characterization of terminal sialic acid linkages on human thymocytes. Correlation between lectin-binding phenotype and sialyltransferase expression. Baum LG; Derbin K; Perillo NL; Wu T; Pang M; Uittenbogaart C J Biol Chem; 1996 May; 271(18):10793-9. PubMed ID: 8631891 [TBL] [Abstract][Full Text] [Related]
9. Cleavage of ST6Gal I by radiation-induced BACE1 inhibits golgi-anchored ST6Gal I-mediated sialylation of integrin β1 and migration in colon cancer cells. Lee M; Park JJ; Ko YG; Lee YS Radiat Oncol; 2012 Mar; 7():47. PubMed ID: 22449099 [TBL] [Abstract][Full Text] [Related]
10. Genetically altered mice with different sialyltransferase deficiencies show tissue-specific alterations in sialylation and sialic acid 9-O-acetylation. Martin LT; Marth JD; Varki A; Varki NM J Biol Chem; 2002 Sep; 277(36):32930-8. PubMed ID: 12068010 [TBL] [Abstract][Full Text] [Related]
11. Beta-galactoside alpha2,6-sialyltransferase I cleavage by BACE1 enhances the sialylation of soluble glycoproteins. A novel regulatory mechanism for alpha2,6-sialylation. Sugimoto I; Futakawa S; Oka R; Ogawa K; Marth JD; Miyoshi E; Taniguchi N; Hashimoto Y; Kitazume S J Biol Chem; 2007 Nov; 282(48):34896-903. PubMed ID: 17897958 [TBL] [Abstract][Full Text] [Related]
12. The structure of human α-2,6-sialyltransferase reveals the binding mode of complex glycans. Kuhn B; Benz J; Greif M; Engel AM; Sobek H; Rudolph MG Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1826-38. PubMed ID: 23999306 [TBL] [Abstract][Full Text] [Related]
13. Forced expression of α2,3-sialyltransferase IV rescues impaired heart development in α2,6-sialyltransferase I-deficient medaka. Omoto T; Wu D; Maruyama E; Tajima K; Hane M; Sato C; Kitajima K Biochem Biophys Res Commun; 2023 Mar; 649():62-70. PubMed ID: 36745971 [TBL] [Abstract][Full Text] [Related]
14. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Cha SK; Ortega B; Kurosu H; Rosenblatt KP; Kuro-O M; Huang CL Proc Natl Acad Sci U S A; 2008 Jul; 105(28):9805-10. PubMed ID: 18606998 [TBL] [Abstract][Full Text] [Related]
15. Anti-inflammatory IgG production requires functional P1 promoter in β-galactoside α2,6-sialyltransferase 1 (ST6Gal-1) gene. Jones MB; Nasirikenari M; Lugade AA; Thanavala Y; Lau JT J Biol Chem; 2012 May; 287(19):15365-70. PubMed ID: 22427662 [TBL] [Abstract][Full Text] [Related]
16. Protein sialylation by sialyltransferase involves radiation resistance. Lee M; Lee HJ; Bae S; Lee YS Mol Cancer Res; 2008 Aug; 6(8):1316-25. PubMed ID: 18708363 [TBL] [Abstract][Full Text] [Related]
17. Remodeling of marrow hematopoietic stem and progenitor cells by non-self ST6Gal-1 sialyltransferase. Nasirikenari M; Veillon L; Collins CC; Azadi P; Lau JTY J Biol Chem; 2014 Mar; 289(10):7178-7189. PubMed ID: 24425878 [TBL] [Abstract][Full Text] [Related]
18. Peanut agglutinin high phenotype of activated CD8+ T cells results from de novo synthesis of CD45 glycans. Amado M; Yan Q; Comelli EM; Collins BE; Paulson JC J Biol Chem; 2004 Aug; 279(35):36689-97. PubMed ID: 15210702 [TBL] [Abstract][Full Text] [Related]
19. 13C-sialic acid labeling of glycans on glycoproteins using ST6Gal-I. Macnaughtan MA; Tian F; Liu S; Meng L; Park S; Azadi P; Moremen KW; Prestegard JH J Am Chem Soc; 2008 Sep; 130(36):11864-5. PubMed ID: 18700760 [TBL] [Abstract][Full Text] [Related]
20. Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. Swindall AF; Bellis SL J Biol Chem; 2011 Jul; 286(26):22982-90. PubMed ID: 21550977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]