These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 12499601)

  • 1. New quinone sulfates from the crinoids Tropiometra afra macrodiscus and Oxycomanthus japonicus.
    Takahashi D; Maoka T; Tsushima M; Fujitani K; Kozuka M; Matsuno T; Shingu T
    Chem Pharm Bull (Tokyo); 2002 Dec; 50(12):1609-12. PubMed ID: 12499601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arginine kinases from the marine feather star Tropiometra afra macrodiscus: The first finding of a prenylation signal sequence in metazoan phosphagen kinases.
    Chouno K; Yano D; Uda K; Fujita T; Iwasaki N; Suzuki T
    Comp Biochem Physiol B Biochem Mol Biol; 2015 Sep; 187():55-61. PubMed ID: 25964010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical defense of crinoids by polyketide sulphates.
    Rideout JA; Smith NB; Sutherland MD
    Experientia; 1979 Oct; 35(10):1273-4. PubMed ID: 499396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proisocrinins A-F, brominated anthraquinone pigments from the stalked crinoid Proisocrinus ruberrimus.
    Wolkenstein K; Schoefberger W; Müller N; Oji T
    J Nat Prod; 2009 Nov; 72(11):2036-9. PubMed ID: 19943623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preservation of hypericin and related polycyclic quinone pigments in fossil crinoids.
    Wolkenstein K; Gross JH; Falk H; Schöler HF
    Proc Biol Sci; 2006 Feb; 273(1585):451-6. PubMed ID: 16615212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhodocomatulin-Type Anthraquinones from the Australian Marine Invertebrates Clathria hirsuta and Comatula rotalaria.
    Khokhar S; Pierens GK; Hooper JN; Ekins MG; Feng Y; Davis RA
    J Nat Prod; 2016 Apr; 79(4):946-53. PubMed ID: 27063022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-inflammatory anthraquinones from the crinoid Himerometra magnipinna.
    Lin YY; Tsai SJ; Chiang MY; Wen ZH; Su JH
    Nat Prod Commun; 2015 Feb; 10(2):317-8. PubMed ID: 25920272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistent and widespread occurrence of bioactive quinone pigments during post-Paleozoic crinoid diversification.
    Wolkenstein K
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2794-9. PubMed ID: 25730856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicants from mangrove plants, V. Isolation of the piscicide, 2-hydroxy-5-methoxy-3-undecyl-1,4 benzoquinone (5-O-methylembelin) from Aegiceras corniculatum.
    Gomez E; de la Cruz-Giron O; de la Cruz AA; Joshi BS; Chittawong V; Miles DH
    J Nat Prod; 1989; 52(3):649-51. PubMed ID: 2778454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nakijiquinones J--R, sesquiterpenoid quinones with an amine residue from okinawan marine sponges.
    Takahashi Y; Ushio M; Kubota T; Yamamoto S; Fromont J; Kobayashi J
    J Nat Prod; 2010 Mar; 73(3):467-71. PubMed ID: 20028027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anthraquinones with quinone reductase-inducing activity and benzophenones from Morinda citrifolia (noni) roots.
    Deng Y; Chin YW; Chai H; Keller WJ; Kinghorn AD
    J Nat Prod; 2007 Dec; 70(12):2049-52. PubMed ID: 18076142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and growth of the feather star Oxycomanthus japonicus to sexual maturity.
    Shibata TF; Sato A; Oji T; Akasaka K
    Zoolog Sci; 2008 Nov; 25(11):1075-83. PubMed ID: 19267619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anthraquinone and Butenolide Constituents from the Crinoid Capillaster multiradiatus.
    Vien LT; Hanh TTH; Huong PTT; Dang NH; Thanh NV; Cuong NX; Nam NH; Thung DC; Kiem PV; Minh CV
    Chem Pharm Bull (Tokyo); 2018 Nov; 66(11):1023-1026. PubMed ID: 30135325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anthraquinones from Gladiolus gandavensis.
    Chen B; Wang DY; Ye Q; Li BG; Zhang GL
    J Asian Nat Prod Res; 2005 Jun; 7(3):197-204. PubMed ID: 15621627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anthraquinone derivatives from Micromonospora rhodorangea.
    Xue CM; Tian L; Lin WH; Deng ZW
    Nat Prod Res; 2009; 23(6):533-8. PubMed ID: 18846470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detailed NMR, including 1,1-ADEQUATE, and anticancer studies of compounds from the echinoderm Colobometra perspinosa.
    Wright AD; Nielson JL; Tapiolas DM; Motti CA; Ovenden SP; Kearns PS; Liptrot CH
    Mar Drugs; 2009 Nov; 7(4):565-75. PubMed ID: 20098598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Studies on the constituents in the roots of Cassia obtusifolia L. and the antimicrobial activities of constituents of the roots and the seeds].
    Kitanaka S; Takido M
    Yakugaku Zasshi; 1986 Apr; 106(4):302-6. PubMed ID: 3525811
    [No Abstract]   [Full Text] [Related]  

  • 18. Sulfated Naphthopyrones and Anthraquinones from the Vietnamese Crinoid Comanthus delicata.
    Vien LT; Hanh TTH; Quang TH; Thung DC; Cuong NX; Nam NH; Cuong PV; Kiem PV; Minh CV
    Chem Pharm Bull (Tokyo); 2022; 70(5):408-412. PubMed ID: 35491198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antiplasmodial quinones from Pentas longiflora and Pentas lanceolata.
    Endale M; Alao JP; Akala HM; Rono NK; Eyase FL; Derese S; Ndakala A; Mbugua M; Walsh DS; Sunnerhagen P; Erdelyi M; Yenesew A
    Planta Med; 2012 Jan; 78(1):31-5. PubMed ID: 21979929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new anthraquinone from roots of Rumex japonicus.
    Chen M; Wang D; Feng Y; Yang W
    Zhongguo Zhong Yao Za Zhi; 2009 Sep; 34(17):2194-6. PubMed ID: 19943483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.