These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 1249988)

  • 1. Comments on exclusion of polymer chains from small pores and its relation to gel permeation chromatography.
    Casassa EF
    Macromolecules; 1976; 9(1):182-5. PubMed ID: 1249988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Branched-polymer separations using comprehensive two-dimensional molecular-topology fractionation x size-exclusion chromatography.
    Edam R; Meunier DM; Mes EP; Van Damme FA; Schoenmakers PJ
    J Chromatogr A; 2008 Aug; 1201(2):208-14. PubMed ID: 18550074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peculiarities in gel permeation chromatography of flexible-chain polymers on macroporous swelling sorbents.
    Belenkii BG; Vilenchik LZ; Nesterov VV; Kolegov VJ; Frenkel SY
    J Chromatogr; 1975 Jun; 109(2):233-8. PubMed ID: 1150817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applicability of the modified universal calibration of gel permeation chromatography on proteins.
    Dondos A
    J Chromatogr A; 2006 Sep; 1127(1-2):183-6. PubMed ID: 16828785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of branched ultrahigh molar mass polymers by asymmetrical flow field-flow fractionation and size exclusion chromatography.
    Otte T; Pasch H; Macko T; Brüll R; Stadler FJ; Kaschta J; Becker F; Buback M
    J Chromatogr A; 2011 Jul; 1218(27):4257-67. PubMed ID: 21238968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of complex branched polymers by size-exclusion chromatography probed with multiple detection.
    Gaborieau M; Nicolas J; Save M; Charleux B; Vairon JP; Gilbert RG; Castignolles P
    J Chromatogr A; 2008 May; 1190(1-2):215-23. PubMed ID: 18378255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-line gel permeation chromatography/nuclear magnetic resonance of complex polymer formulations.
    Robertson DF; Heron JE; Beckett MC
    Appl Spectrosc; 2004 Sep; 58(9):1122-7. PubMed ID: 15479530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the porous structures of new polymer packing materials by inverse size-exclusion chromatography.
    Ousalem M; Zhu XX; Hradil J
    J Chromatogr A; 2000 Dec; 903(1-2):13-9. PubMed ID: 11153936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size exclusion chromatography and universal calibration of gel columns.
    le Maire M; Viel A; Møller JV
    Anal Biochem; 1989 Feb; 177(1):50-6. PubMed ID: 2742153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decomposition of size-exclusion chromatography elution curves of complex branched polymers.
    Netopilík M; Janata M
    J Chromatogr A; 2014 Feb; 1330():14-9. PubMed ID: 24468240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-exclusion chromatography of low-molecular-mass polymers using mesoporous silica.
    Nassivera T; Eklund AG; Landry CC
    J Chromatogr A; 2002 Oct; 973(1-2):97-101. PubMed ID: 12437167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the concentration effects in size exclusion chromatography VII. A quantitative verification for the model theory of concentration and molecular mass dependences of hydrodynamic volumes for polydisperse polymers.
    Song MS; Hu GX; Li XY; Zhao B
    J Chromatogr A; 2002 Jul; 961(2):155-70. PubMed ID: 12184617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-exclusion-chromatography separation of randomly branched polymers with tetrafunctional branch points and local dispersity.
    Netopilík M
    J Chromatogr A; 2012 Oct; 1260():97-101. PubMed ID: 22985525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molar masses and structure in solution of haemoglobin hyperpolymers--a common calibration of size exclusion chromatography of these artificial oxygen carriers.
    Pötzschke H; Barnikol WK; Domack U; Dinkelmann S; Guth S
    Artif Cells Blood Substit Immobil Biotechnol; 1997 Nov; 25(6):527-40. PubMed ID: 9352058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of size-exclusion chromatography distribution coefficients of comb-shaped molecules in spherical pores comparison of simulation and experiment.
    Radke W
    J Chromatogr A; 2004 Mar; 1028(2):211-8. PubMed ID: 14989474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Branched polymers characterized by comprehensive two-dimensional separations with fully orthogonal mechanisms: molecular-topology fractionation×size-exclusion chromatography.
    Edam R; Mes EP; Meunier DM; Van Damme FA; Schoenmakers PJ
    J Chromatogr A; 2014 Oct; 1366():54-64. PubMed ID: 25282310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative evaluation of the swelling and degrees of cross-linking in three organic gel packings for SEC through some geometric parameters.
    García R; Gómez CM; Codoñer A; Abad C; Campos A
    J Biochem Biophys Methods; 2003 Jun; 56(1-3):53-67. PubMed ID: 12834968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the chromatographic efficiency of analytical scale column format porous polymer monoliths: interplay of morphology and nanoscale gel porosity.
    Nischang I
    J Chromatogr A; 2012 May; 1236():152-63. PubMed ID: 22443891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-exclusion chromatography (SEC) of branched polymers and polysaccharides.
    Gaborieau M; Castignolles P
    Anal Bioanal Chem; 2011 Feb; 399(4):1413-23. PubMed ID: 20967430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the influence of interdetector volume on local calibration in size exclusion chromatography with dual multiangle-light-scattering/concentration detection.
    Netopilík M
    J Chromatogr A; 2006 Apr; 1113(1-2):162-6. PubMed ID: 16499916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.