BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 12501193)

  • 1. Understanding the catalytic mechanism of GTPase-activating proteins: demonstration of the importance of switch domain stabilization in the stimulation of GTP hydrolysis.
    Fidyk NJ; Cerione RA
    Biochemistry; 2002 Dec; 41(52):15644-53. PubMed ID: 12501193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influencing cellular transformation by modulating the rates of GTP hydrolysis by Cdc42.
    Fidyk N; Wang JB; Cerione RA
    Biochemistry; 2006 Jun; 45(25):7750-62. PubMed ID: 16784226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical studies of the mechanism of action of the Cdc42-GTPase-activating protein.
    Leonard DA; Lin R; Cerione RA; Manor D
    J Biol Chem; 1998 Jun; 273(26):16210-5. PubMed ID: 9632678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GAP positions catalytic H-Ras residue Q61 for GTP hydrolysis in molecular dynamics simulations, complicating chemical rescue of Ras deactivation.
    Patel LA; Waybright TJ; Stephen AG; Neale C
    Comput Biol Chem; 2023 Jun; 104():107835. PubMed ID: 36893567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the interactions between the small GTPase Cdc42 and its GTPase-activating proteins and putative effectors. Comparison of kinetic properties of Cdc42 binding to the Cdc42-interactive domains.
    Zhang B; Wang ZX; Zheng Y
    J Biol Chem; 1997 Aug; 272(35):21999-2007. PubMed ID: 9268338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP.
    Nassar N; Hoffman GR; Manor D; Clardy JC; Cerione RA
    Nat Struct Biol; 1998 Dec; 5(12):1047-52. PubMed ID: 9846874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic GTP hydrolysis is observed for a switch 1 variant of Cdc42 in the presence of a specific GTPase inhibitor.
    Morris KM; Henderson R; Suresh Kumar TK; Heyes CD; Adams PD
    Small GTPases; 2016; 7(1):1-11. PubMed ID: 26828437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural plasticity mediates distinct GAP-dependent GTP hydrolysis mechanisms in Rab33 and Rab5.
    Majumdar S; Acharya A; Prakash B
    FEBS J; 2017 Dec; 284(24):4358-4375. PubMed ID: 29095572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the GTPase-activating protein-related domain from IQGAP1.
    Kurella VB; Richard JM; Parke CL; Lecour LF; Bellamy HD; Worthylake DK
    J Biol Chem; 2009 May; 284(22):14857-65. PubMed ID: 19321438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a novel Cdc42GAP domain at the carboxyl terminus of BNIP-2.
    Low BC; Seow KT; Guy GR
    J Biol Chem; 2000 May; 275(19):14415-22. PubMed ID: 10799524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical characterization of Rab3-GTPase-activating protein reveals a mechanism similar to that of Ras-GAP.
    Clabecq A; Henry JP; Darchen F
    J Biol Chem; 2000 Oct; 275(41):31786-91. PubMed ID: 10859313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Cdc42 mutant specifically activated by intersectin.
    Smith WJ; Hamel B; Yohe ME; Sondek J; Cerione RA; Snyder JT
    Biochemistry; 2005 Oct; 44(40):13282-90. PubMed ID: 16201754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A built-in arginine finger triggers the self-stimulatory GTPase-activating activity of rho family GTPases.
    Zhang B; Zhang Y; Collins CC; Johnson DI; Zheng Y
    J Biol Chem; 1999 Jan; 274(5):2609-12. PubMed ID: 9915787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism.
    Pan X; Eathiraj S; Munson M; Lambright DG
    Nature; 2006 Jul; 442(7100):303-6. PubMed ID: 16855591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RanGAP mediates GTP hydrolysis without an arginine finger.
    Seewald MJ; Körner C; Wittinghofer A; Vetter IR
    Nature; 2002 Feb; 415(6872):662-6. PubMed ID: 11832950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ability of GAP1IP4BP to function as a Rap1 GTPase-activating protein (GAP) requires its Ras GAP-related domain and an arginine finger rather than an asparagine thumb.
    Kupzig S; Bouyoucef-Cherchalli D; Yarwood S; Sessions R; Cullen PJ
    Mol Cell Biol; 2009 Jul; 29(14):3929-40. PubMed ID: 19433443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP.
    Rittinger K; Walker PA; Eccleston JF; Nurmahomed K; Owen D; Laue E; Gamblin SJ; Smerdon SJ
    Nature; 1997 Aug; 388(6643):693-7. PubMed ID: 9262406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural determinants required for the interaction between Rho GTPase and the GTPase-activating domain of p190.
    Li R; Zhang B; Zheng Y
    J Biol Chem; 1997 Dec; 272(52):32830-5. PubMed ID: 9407060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases.
    Shen K; Valenstein ML; Gu X; Sabatini DM
    J Biol Chem; 2019 Feb; 294(8):2970-2975. PubMed ID: 30651352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a putative effector for Cdc42Hs with high sequence similarity to the RasGAP-related protein IQGAP1 and a Cdc42Hs binding partner with similarity to IQGAP2.
    McCallum SJ; Wu WJ; Cerione RA
    J Biol Chem; 1996 Sep; 271(36):21732-7. PubMed ID: 8702968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.