BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 12501193)

  • 21. Structural basis for the unique biological function of small GTPase RHEB.
    Yu Y; Li S; Xu X; Li Y; Guan K; Arnold E; Ding J
    J Biol Chem; 2005 Apr; 280(17):17093-100. PubMed ID: 15728574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The IQGAP1-Rac1 and IQGAP1-Cdc42 interactions: interfaces differ between the complexes.
    Owen D; Campbell LJ; Littlefield K; Evetts KA; Li Z; Sacks DB; Lowe PN; Mott HR
    J Biol Chem; 2008 Jan; 283(3):1692-1704. PubMed ID: 17984089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CDC42-IQGAP Interactions Scrutinized: New Insights into the Binding Properties of the GAP-Related Domain.
    Mosaddeghzadeh N; Pudewell S; Bazgir F; Kazemein Jasemi NS; Krumbach OHF; Gremer L; Willbold D; Dvorsky R; Ahmadian MR
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noncanonical Myo9b-RhoGAP Accelerates RhoA GTP Hydrolysis by a Dual-Arginine-Finger Mechanism.
    Yi F; Kong R; Ren J; Zhu L; Lou J; Wu JY; Feng W
    J Mol Biol; 2016 Jul; 428(15):3043-57. PubMed ID: 27363609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The BNIP-2 and Cdc42GAP homology (BCH) domain of p50RhoGAP/Cdc42GAP sequesters RhoA from inactivation by the adjacent GTPase-activating protein domain.
    Zhou YT; Chew LL; Lin SC; Low BC
    Mol Biol Cell; 2010 Sep; 21(18):3232-46. PubMed ID: 20660160
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antiapoptotic Cdc42 mutants are potent activators of cellular transformation.
    Tu SS; Wu WJ; Yang W; Nolbant P; Hahn K; Cerione RA
    Biochemistry; 2002 Oct; 41(41):12350-8. PubMed ID: 12369824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The BNIP-2 and Cdc42GAP homology domain of BNIP-2 mediates its homophilic association and heterophilic interaction with Cdc42GAP.
    Low BC; Seow KT; Guy GR
    J Biol Chem; 2000 Dec; 275(48):37742-51. PubMed ID: 10954711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloning and expression of a human CDC42 GTPase-activating protein reveals a functional SH3-binding domain.
    Barfod ET; Zheng Y; Kuang WJ; Hart MJ; Evans T; Cerione RA; Ashkenazi A
    J Biol Chem; 1993 Dec; 268(35):26059-62. PubMed ID: 8253717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Structural Basis for Cdc42-Induced Dimerization of IQGAPs.
    LeCour L; Boyapati VK; Liu J; Li Z; Sacks DB; Worthylake DK
    Structure; 2016 Sep; 24(9):1499-508. PubMed ID: 27524202
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue.
    Rittinger K; Walker PA; Eccleston JF; Smerdon SJ; Gamblin SJ
    Nature; 1997 Oct; 389(6652):758-62. PubMed ID: 9338791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluoride activation of the Rho family GTP-binding protein Cdc42Hs.
    Hoffman GR; Nassar N; Oswald RE; Cerione RA
    J Biol Chem; 1998 Feb; 273(8):4392-9. PubMed ID: 9468490
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Concerted regulation of cell dynamics by BNIP-2 and Cdc42GAP homology/Sec14p-like, proline-rich, and GTPase-activating protein domains of a novel Rho GTPase-activating protein, BPGAP1.
    Shang X; Zhou YT; Low BC
    J Biol Chem; 2003 Nov; 278(46):45903-14. PubMed ID: 12944407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Guanine nucleotide induced conformational change of Cdc42 revealed by hydrogen/deuterium exchange mass spectrometry.
    Yang SW; Ting HC; Lo YT; Wu TY; Huang HW; Yang CJ; Chan JF; Chuang MC; Hsu YH
    Biochim Biophys Acta; 2016 Jan; 1864(1):42-51. PubMed ID: 26542736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical comparisons of the Saccharomyces cerevisiae Bem2 and Bem3 proteins. Delineation of a limit Cdc42 GTPase-activating protein domain.
    Zheng Y; Hart MJ; Shinjo K; Evans T; Bender A; Cerione RA
    J Biol Chem; 1993 Nov; 268(33):24629-34. PubMed ID: 8227021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arabidopsis RopGAPs are a novel family of rho GTPase-activating proteins that require the Cdc42/Rac-interactive binding motif for rop-specific GTPase stimulation.
    Wu G; Li H; Yang Z
    Plant Physiol; 2000 Dec; 124(4):1625-36. PubMed ID: 11115880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis unifying diverse GTP hydrolysis mechanisms.
    Anand B; Majumdar S; Prakash B
    Biochemistry; 2013 Feb; 52(6):1122-30. PubMed ID: 23293872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Rap-RapGAP complex: GTP hydrolysis without catalytic glutamine and arginine residues.
    Scrima A; Thomas C; Deaconescu D; Wittinghofer A
    EMBO J; 2008 Apr; 27(7):1145-53. PubMed ID: 18309292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The arginine finger of RasGAP helps Gln-61 align the nucleophilic water in GAP-stimulated hydrolysis of GTP.
    Resat H; Straatsma TP; Dixon DA; Miller JH
    Proc Natl Acad Sci U S A; 2001 May; 98(11):6033-8. PubMed ID: 11371635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GTP hydrolysis mechanisms in ras p21 and in the ras-GAP complex studied by fluorescence measurements on tryptophan mutants.
    Antonny B; Chardin P; Roux M; Chabre M
    Biochemistry; 1991 Aug; 30(34):8287-95. PubMed ID: 1883817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular characterization of the GTPase-activating domain of ADP-ribosylation factor domain protein 1 (ARD1).
    Vitale N; Moss J; Vaughan M
    J Biol Chem; 1998 Jan; 273(5):2553-60. PubMed ID: 9446556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.