BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 12501193)

  • 41. A switch I mutant of Cdc42 exhibits less conformational freedom.
    Chandrashekar R; Salem O; Krizova H; McFeeters R; Adams PD
    Biochemistry; 2011 Jul; 50(28):6196-207. PubMed ID: 21667996
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phosphorylation of IQGAP1 modulates its binding to Cdc42, revealing a new type of rho-GTPase regulator.
    Grohmanova K; Schlaepfer D; Hess D; Gutierrez P; Beck M; Kroschewski R
    J Biol Chem; 2004 Nov; 279(47):48495-504. PubMed ID: 15355962
    [TBL] [Abstract][Full Text] [Related]  

  • 43. BNIP-2 induces cell elongation and membrane protrusions by interacting with Cdc42 via a unique Cdc42-binding motif within its BNIP-2 and Cdc42GAP homology domain.
    Zhou YT; Guy GR; Low BC
    Exp Cell Res; 2005 Feb; 303(2):263-74. PubMed ID: 15652341
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Negative regulation of Rho family GTPases Cdc42 and Rac2 by homodimer formation.
    Zhang B; Zheng Y
    J Biol Chem; 1998 Oct; 273(40):25728-33. PubMed ID: 9748241
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Legionella pneumophila GTPase activating protein LepB accelerates Rab1 deactivation by a non-canonical hydrolytic mechanism.
    Mishra AK; Del Campo CM; Collins RE; Roy CR; Lambright DG
    J Biol Chem; 2013 Aug; 288(33):24000-11. PubMed ID: 23821544
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The GTPase-activating protein Rap1GAP uses a catalytic asparagine.
    Daumke O; Weyand M; Chakrabarti PP; Vetter IR; Wittinghofer A
    Nature; 2004 May; 429(6988):197-201. PubMed ID: 15141215
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Residues in Cdc42 that specify binding to individual CRIB effector proteins.
    Owen D; Mott HR; Laue ED; Lowe PN
    Biochemistry; 2000 Feb; 39(6):1243-50. PubMed ID: 10684602
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants.
    Scheffzek K; Ahmadian MR; Kabsch W; Wiesmüller L; Lautwein A; Schmitz F; Wittinghofer A
    Science; 1997 Jul; 277(5324):333-8. PubMed ID: 9219684
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Structural Basis of Oncogenic Mutations G12, G13 and Q61 in Small GTPase K-Ras4B.
    Lu S; Jang H; Nussinov R; Zhang J
    Sci Rep; 2016 Feb; 6():21949. PubMed ID: 26902995
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New insights into the role of conserved, essential residues in the GTP binding/GTP hydrolytic cycle of large G proteins.
    Majumdar S; Ramachandran S; Cerione RA
    J Biol Chem; 2006 Apr; 281(14):9219-26. PubMed ID: 16469737
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction of Rac1 with GTPase-activating proteins and putative effectors. A comparison with Cdc42 and RhoA.
    Zhang B; Chernoff J; Zheng Y
    J Biol Chem; 1998 Apr; 273(15):8776-82. PubMed ID: 9535855
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Probing the GTPase cycle with real-time NMR: GAP and GEF activities in cell extracts.
    Marshall CB; Meiri D; Smith MJ; Mazhab-Jafari MT; Gasmi-Seabrook GM; Rottapel R; Stambolic V; Ikura M
    Methods; 2012 Aug; 57(4):473-85. PubMed ID: 22750304
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigation of the GTP-binding/GTPase cycle of Cdc42Hs using extrinsic reporter group fluorescence.
    Nomanbhoy TK; Leonard DA; Manor D; Cerione RA
    Biochemistry; 1996 Apr; 35(14):4602-8. PubMed ID: 8605211
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras.
    Ahmadian MR; Stege P; Scheffzek K; Wittinghofer A
    Nat Struct Biol; 1997 Sep; 4(9):686-9. PubMed ID: 9302992
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cdc42GAP, reactive oxygen species, and the vimentin network.
    Li QF; Spinelli AM; Tang DD
    Am J Physiol Cell Physiol; 2009 Aug; 297(2):C299-309. PubMed ID: 19494238
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure of the BH domain from graf and its implications for Rho GTPase recognition.
    Longenecker KL; Zhang B; Derewenda U; Sheffield PJ; Dauter Z; Parsons JT; Zheng Y; Derewenda ZS
    J Biol Chem; 2000 Dec; 275(49):38605-10. PubMed ID: 10982819
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Active and Inactive Cdc42 Differ in Their Insert Region Conformational Dynamics.
    Haspel N; Jang H; Nussinov R
    Biophys J; 2021 Jan; 120(2):306-318. PubMed ID: 33347888
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The conserved arginine in rho-GTPase-activating protein is essential for efficient catalysis but not for complex formation with Rho.GDP and aluminum fluoride.
    Graham DL; Eccleston JF; Lowe PN
    Biochemistry; 1999 Jan; 38(3):985-91. PubMed ID: 9893994
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of RhoA GTP hydrolysis by the GTPase-activating proteins p190, p50RhoGAP, Bcr, and 3BP-1.
    Zhang B; Zheng Y
    Biochemistry; 1998 Apr; 37(15):5249-57. PubMed ID: 9548756
    [TBL] [Abstract][Full Text] [Related]  

  • 60. p190 RhoGAP, the major RasGAP-associated protein, binds GTP directly.
    Foster R; Hu KQ; Shaywitz DA; Settleman J
    Mol Cell Biol; 1994 Nov; 14(11):7173-81. PubMed ID: 7935432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.