These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12501210)

  • 1. Surface denaturation and amyloid fibril formation of insulin at model lipid-water interfaces.
    Sharp JS; Forrest JA; Jones RA
    Biochemistry; 2002 Dec; 41(52):15810-9. PubMed ID: 12501210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing aggregation and fibril formation of insulin in polyelectrolyte multilayers.
    Koo J; Czeslik C
    Colloids Surf B Biointerfaces; 2012 Jun; 94():80-8. PubMed ID: 22369752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amyloid-β aggregation on model lipid membranes: an atomic force microscopy study.
    Hane F; Drolle E; Gaikwad R; Faught E; Leonenko Z
    J Alzheimers Dis; 2011; 26(3):485-94. PubMed ID: 21694459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleation and growth of insulin fibrils in bulk solution and at hydrophobic polystyrene surfaces.
    Smith MI; Sharp JS; Roberts CJ
    Biophys J; 2007 Sep; 93(6):2143-51. PubMed ID: 17496011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human insulin adsorption kinetics, conformational changes and amyloidal aggregate formation on hydrophobic surfaces.
    Nault L; Guo P; Jain B; Bréchet Y; Bruckert F; Weidenhaupt M
    Acta Biomater; 2013 Feb; 9(2):5070-9. PubMed ID: 23022543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of amyloid spherulite formation by bovine insulin.
    Krebs MR; Bromley EH; Rogers SS; Donald AM
    Biophys J; 2005 Mar; 88(3):2013-21. PubMed ID: 15596515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic self-assembly of insulin monomers into amyloid fibrils on a solid surface.
    Lee JS; Um E; Park JK; Park CB
    Langmuir; 2008 Jul; 24(14):7068-71. PubMed ID: 18549255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing adsorption and aggregation of insulin at a poly(acrylic acid) brush.
    Evers F; Reichhart C; Steitz R; Tolan M; Czeslik C
    Phys Chem Chem Phys; 2010 May; 12(17):4375-82. PubMed ID: 20407709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of natural biopolymers on amyloid fibril formation and morphology.
    Ow SY; Bekard I; Dunstan DE
    Int J Biol Macromol; 2018 Jan; 106():30-38. PubMed ID: 28778524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of islet amyloid polypeptide fibrillation at lipid interfaces studied by infrared reflection absorption spectroscopy.
    Lopes DH; Meister A; Gohlke A; Hauser A; Blume A; Winter R
    Biophys J; 2007 Nov; 93(9):3132-41. PubMed ID: 17660321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A kinetic model for beta-amyloid adsorption at the air/solution interface and its implication to the beta-amyloid aggregation process.
    Jiang D; Dinh KL; Ruthenburg TC; Zhang Y; Su L; Land DP; Zhou F
    J Phys Chem B; 2009 Mar; 113(10):3160-8. PubMed ID: 19260715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Template-directed self-assembly and growth of insulin amyloid fibrils.
    Ha C; Park CB
    Biotechnol Bioeng; 2005 Jun; 90(7):848-55. PubMed ID: 15803463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvational tuning of the unfolding, aggregation and amyloidogenesis of insulin.
    Grudzielanek S; Jansen R; Winter R
    J Mol Biol; 2005 Aug; 351(4):879-94. PubMed ID: 16051271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain.
    Zurdo J; Guijarro JI; Jiménez JL; Saibil HR; Dobson CM
    J Mol Biol; 2001 Aug; 311(2):325-40. PubMed ID: 11478864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical microscopy of growing insulin amyloid spherulites on surfaces in vitro.
    Rogers SS; Krebs MR; Bromley EH; van der Linden E; Donald AM
    Biophys J; 2006 Feb; 90(3):1043-54. PubMed ID: 16272436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and nanomechanical comparison of epitaxially and solution-grown amyloid β25-35 fibrils.
    Murvai Ü; Somkuti J; Smeller L; Penke B; Kellermayer MS
    Biochim Biophys Acta; 2015 May; 1854(5):327-32. PubMed ID: 25600136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Native-like structure of proteins at a planar poly(acrylic acid) brush.
    Reichhart C; Czeslik C
    Langmuir; 2009 Jan; 25(2):1047-53. PubMed ID: 19099523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of conformational changes of fibronectin adsorbed onto model surfaces.
    Baujard-Lamotte L; Noinville S; Goubard F; Marque P; Pauthe E
    Colloids Surf B Biointerfaces; 2008 May; 63(1):129-37. PubMed ID: 18249527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic Origin of the Combined Effect of Surfaces and Mechanical Agitation on Amyloid Formation.
    Grigolato F; Colombo C; Ferrari R; Rezabkova L; Arosio P
    ACS Nano; 2017 Nov; 11(11):11358-11367. PubMed ID: 29045787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.