BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12501241)

  • 1. Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding.
    Rosenberg MF; Kamis AB; Callaghan R; Higgins CF; Ford RC
    J Biol Chem; 2003 Mar; 278(10):8294-9. PubMed ID: 12501241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the multidrug resistance P-glycoprotein to 2.5 nm resolution determined by electron microscopy and image analysis.
    Rosenberg MF; Callaghan R; Ford RC; Higgins CF
    J Biol Chem; 1997 Apr; 272(16):10685-94. PubMed ID: 9099718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repacking of the transmembrane domains of P-glycoprotein during the transport ATPase cycle.
    Rosenberg MF; Velarde G; Ford RC; Martin C; Berridge G; Kerr ID; Callaghan R; Schmidlin A; Wooding C; Linton KJ; Higgins CF
    EMBO J; 2001 Oct; 20(20):5615-25. PubMed ID: 11598005
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Futamata R; Ogasawara F; Ichikawa T; Kodan A; Kimura Y; Kioka N; Ueda K
    J Biol Chem; 2020 Apr; 295(15):5002-5011. PubMed ID: 32111736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ATPase and ATP-binding functions of P-glycoprotein--modulation by interaction with defined phospholipids.
    Romsicki Y; Sharom FJ
    Eur J Biochem; 1998 Aug; 256(1):170-8. PubMed ID: 9746361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational changes of P-glycoprotein by nucleotide binding.
    Wang G; Pincheira R; Zhang M; Zhang JT
    Biochem J; 1997 Dec; 328 ( Pt 3)(Pt 3):897-904. PubMed ID: 9396736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional structure of P-glycoprotein: the transmembrane regions adopt an asymmetric configuration in the nucleotide-bound state.
    Rosenberg MF; Callaghan R; Modok S; Higgins CF; Ford RC
    J Biol Chem; 2005 Jan; 280(4):2857-62. PubMed ID: 15485807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning, overexpression, purification, and characterization of the carboxyl-terminal nucleotide binding domain of P-glycoprotein.
    Sharma S; Rose DR
    J Biol Chem; 1995 Jun; 270(23):14085-93. PubMed ID: 7775470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide-induced structural changes in P-glycoprotein observed by electron microscopy.
    Lee JY; Urbatsch IL; Senior AE; Wilkens S
    J Biol Chem; 2008 Feb; 283(9):5769-79. PubMed ID: 18093977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of the multidrug resistance protein 1 (MRP1/ABCC1). crystallization and single-particle analysis.
    Rosenberg MF; Mao Q; Holzenburg A; Ford RC; Deeley RG; Cole SP
    J Biol Chem; 2001 May; 276(19):16076-82. PubMed ID: 11279022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans.
    Jin MS; Oldham ML; Zhang Q; Chen J
    Nature; 2012 Oct; 490(7421):566-9. PubMed ID: 23000902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR).
    Rosenberg MF; Kamis AB; Aleksandrov LA; Ford RC; Riordan JR
    J Biol Chem; 2004 Sep; 279(37):39051-7. PubMed ID: 15247233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for gating mechanisms of a eukaryotic P-glycoprotein homolog.
    Kodan A; Yamaguchi T; Nakatsu T; Sakiyama K; Hipolito CJ; Fujioka A; Hirokane R; Ikeguchi K; Watanabe B; Hiratake J; Kimura Y; Suga H; Ueda K; Kato H
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4049-54. PubMed ID: 24591620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Insights into Allosteric Conformational Modulation of P-Glycoprotein by Substrate and Inhibitor Binding.
    Xing J; Huang S; Heng Y; Mei H; Pan X
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33353070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug binding in human P-glycoprotein causes conformational changes in both nucleotide-binding domains.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2003 Jan; 278(3):1575-8. PubMed ID: 12421806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven homology modelling of P-glycoprotein in the ATP-bound state indicates flexibility of the transmembrane domains.
    Stockner T; de Vries SJ; Bonvin AM; Ecker GF; Chiba P
    FEBS J; 2009 Feb; 276(4):964-72. PubMed ID: 19215299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The central cavity of ABCB1 undergoes alternating access during ATP hydrolysis.
    van Wonderen JH; McMahon RM; O'Mara ML; McDevitt CA; Thomson AJ; Kerr ID; MacMillan F; Callaghan R
    FEBS J; 2014 May; 281(9):2190-2201. PubMed ID: 24597976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The vinblastine binding site adopts high- and low-affinity conformations during a transport cycle of P-glycoprotein.
    Martin C; Higgins CF; Callaghan R
    Biochemistry; 2001 Dec; 40(51):15733-42. PubMed ID: 11747450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shedding light on drug transport: structure and function of the P-glycoprotein multidrug transporter (ABCB1).
    Sharom FJ
    Biochem Cell Biol; 2006 Dec; 84(6):979-92. PubMed ID: 17215884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. About a switch: how P-glycoprotein (ABCB1) harnesses the energy of ATP binding and hydrolysis to do mechanical work.
    Sauna ZE; Ambudkar SV
    Mol Cancer Ther; 2007 Jan; 6(1):13-23. PubMed ID: 17237262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.