These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12501370)

  • 21. Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus.
    Chung KR; Shilts T; Ertürk U; Timmer LW; Ueng PP
    FEMS Microbiol Lett; 2003 Sep; 226(1):23-30. PubMed ID: 13129603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. "The quantitative determination of indolic microbial tryptophan metabolites in human and rodent samples: A systematic review".
    Anderson GM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Dec; 1186():123008. PubMed ID: 34735972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of ruminal degradation of L-tryptophan to 3-methylindole, in vitro.
    Hammond AC; Carlson JR
    J Anim Sci; 1980 Jul; 51(1):207-14. PubMed ID: 7410274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of indole-3-pyruvic acid pathway-mediated biosynthesis of auxin in Neurospora crassa.
    Sardar P; Kempken F
    PLoS One; 2018; 13(2):e0192293. PubMed ID: 29420579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects.
    Steenhoudt O; Vanderleyden J
    FEMS Microbiol Rev; 2000 Oct; 24(4):487-506. PubMed ID: 10978548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tetranuclear and Octanuclear Manganese Carboxylate Clusters: Preparation and Reactivity of (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(9)(H(2)O)] and Synthesis of (NBu(n)(4))(2)[Mn(8)O(4)(O(2)CPh)(12)(Et(2)mal)(2)(H(2)O)(2)] with a "Linked-Butterfly" Structure.
    Wemple MW; Tsai HL; Wang S; Claude JP; Streib WE; Huffman JC; Hendrickson DN; Christou G
    Inorg Chem; 1996 Oct; 35(22):6437-6449. PubMed ID: 11666791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosynthesis of indole-3-acetic acid in Azospirillum brasilense. Insights from quantum chemistry.
    Zakharova EA; Shcherbakov AA; Brudnik VV; Skripko NG; Bulkhin NSh; Ignatov VV
    Eur J Biochem; 1999 Feb; 259(3):572-6. PubMed ID: 10092839
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro metabolism of the stereoisomers of 2,6-diaminopimelic acid by mixed rumen protozoa and bacteria.
    El-Waziry AM; Onodera R
    Curr Microbiol; 1996 Nov; 33(5):306-11. PubMed ID: 8875911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential effects of indolepyruvic acid and 5-hydroxytryptophan on indole metabolism in the pineal gland of the rat during the light-dark cycle.
    Ferretti C; Blengio M; Ghi P; Genazzani E
    Eur J Pharmacol; 1990 Oct; 187(3):345-56. PubMed ID: 1705890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on the production of conjugated linoleic acid from linoleic and vaccenic acids by mixed rumen protozoa.
    Or-Rashid MM; AlZahal O; McBride BW
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):533-41. PubMed ID: 18797866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The pathway of auxin biosynthesis in plants.
    Mano Y; Nemoto K
    J Exp Bot; 2012 May; 63(8):2853-72. PubMed ID: 22447967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ruminal tryptophan-utilizing bacteria degrade ergovaline from tall fescue seed extract.
    Harlow BE; Goodman JP; Lynn BC; Flythe MD; Ji H; Aiken GE
    J Anim Sci; 2017 Feb; 95(2):980-988. PubMed ID: 28380578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Auxin and Tryptophan Homeostasis Are Facilitated by the ISS1/VAS1 Aromatic Aminotransferase in Arabidopsis.
    Pieck M; Yuan Y; Godfrey J; Fisher C; Zolj S; Vaughan D; Thomas N; Wu C; Ramos J; Lee N; Normanly J; Celenza JL
    Genetics; 2015 Sep; 201(1):185-99. PubMed ID: 26163189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation of indole/skatole during malodor formation in the salivary sediment model system and initial examination of the oral bacteria involved.
    Codipilly D; Kleinberg I
    J Breath Res; 2008 Mar; 2(1):017017. PubMed ID: 21386161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tryptophan catabolism in Brevibacterium linens as a potential cheese flavor adjunct.
    Ummadi M; Weimer BC
    J Dairy Sci; 2001 Aug; 84(8):1773-82. PubMed ID: 11518299
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep.
    Rira M; Morgavi DP; Archimède H; Marie-Magdeleine C; Popova M; Bousseboua H; Doreau M
    J Anim Sci; 2015 Jan; 93(1):334-47. PubMed ID: 25568379
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic engineering of indole pyruvic acid biosynthesis in Escherichia coli with tdiD.
    Zhu Y; Hua Y; Zhang B; Sun L; Li W; Kong X; Hong J
    Microb Cell Fact; 2017 Jan; 16(1):2. PubMed ID: 28049530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and characterization of isopimaric acid-degrading bacteria from a sequencing batch reactor.
    Wilson AE; Moore ER; Mohn WW
    Appl Environ Microbiol; 1996 Sep; 62(9):3146-51. PubMed ID: 8795202
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel tryptophan metabolic pathways in auxin biosynthesis in silkworm.
    Yokoyama C; Takei M; Kouzuma Y; Nagata S; Suzuki Y
    J Insect Physiol; 2017 Aug; 101():91-96. PubMed ID: 28733236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tryptophan-dependent indole-3-acetic acid biosynthesis by 'IAA-synthase' proceeds via indole-3-acetamide.
    Pollmann S; Düchting P; Weiler EW
    Phytochemistry; 2009 Mar; 70(4):523-31. PubMed ID: 19268331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.