BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12502038)

  • 1. Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation.
    Del Bianco S; Martelli F; Zaccanti G
    Phys Med Biol; 2002 Dec; 47(23):4131-44. PubMed ID: 12502038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penetration depth of low-coherence enhanced backscattered light in subdiffusion regime.
    Subramanian H; Pradhan P; Kim YL; Backman V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041914. PubMed ID: 17500928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of the diffusion equation to describe photon migration through an infinite medium: numerical and experimental investigation.
    Martelli F; Bassani M; Alianelli L; Zangheri L; Zaccanti G
    Phys Med Biol; 2000 May; 45(5):1359-73. PubMed ID: 10843109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of the light emerging from a diffusive medium: angular dependence and flux at the external boundary.
    Martelli F; Sassaroli A; Zaccanti G; Yamada Y
    Phys Med Biol; 1999 May; 44(5):1257-75. PubMed ID: 10368017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. There's plenty of light at the bottom: statistics of photon penetration depth in random media.
    Martelli F; Binzoni T; Pifferi A; Spinelli L; Farina A; Torricelli A
    Sci Rep; 2016 Jun; 6():27057. PubMed ID: 27256988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical approximate solutions of the time-domain diffusion equation in layered slabs.
    Martelli F; Sassaroli A; Yamada Y; Zaccanti G
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jan; 19(1):71-80. PubMed ID: 11778735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sampling tissue volumes using frequency-domain photon migration.
    Bevilacqua F; You JS; Hayakawa CK; Venugopalan V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051908. PubMed ID: 15244848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Comparison of Analytical Solution and Finite Element Method for Investigation of Near-infrared Light Propagation in Brain Tissue Model.
    Borjkhani H; Setarehdan SK
    Basic Clin Neurosci; 2023; 14(2):193-202. PubMed ID: 38107524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Location of the effective diffusing-photon source in a strongly scattering medium.
    Kostko AF; Pavlov VA
    Appl Opt; 1997 Oct; 36(30):7577-82. PubMed ID: 18264271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons.
    Liebert A; Wabnitz H; Grosenick D; Möller M; Macdonald R; Rinneberg H
    Appl Opt; 2003 Oct; 42(28):5785-92. PubMed ID: 14528944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements.
    Madsen SJ; Wilson BC; Patterson MS; Park YD; Jacques SL; Hefetz Y
    Appl Opt; 1992 Jun; 31(18):3509-17. PubMed ID: 20725319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practical improvements on photon diffusion theory: application to isotropic scattering.
    Graaff R; Rinzema K
    Phys Med Biol; 2001 Nov; 46(11):3043-50. PubMed ID: 11720362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging.
    Houston JP; Thompson AB; Gurfinkel M; Sevick-Muraca EM
    Photochem Photobiol; 2003 Apr; 77(4):420-30. PubMed ID: 12733654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of anisotropic optical parameters of tissue in a slab geometry.
    Dudko OK; Weiss GH
    Biophys J; 2005 May; 88(5):3205-11. PubMed ID: 15731380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photon migration in turbid media with anisotropic optical properties.
    Dudko OK; Weiss GH; Chernomordik V; Gandjbakhche AH
    Phys Med Biol; 2004 Sep; 49(17):3979-89. PubMed ID: 15470918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical calculation of the mean time spent by photons inside an absorptive inclusion embedded in a highly scattering medium.
    Chernomordik V; Hattery DW; Gannot I; Zaccanti G; Gandjbakhche A
    J Biomed Opt; 2002 Jul; 7(3):486-92. PubMed ID: 12175301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement.
    Sawosz P; Kacprzak M; Weigl W; Borowska-Solonynko A; Krajewski P; Zolek N; Ciszek B; Maniewski R; Liebert A
    Phys Med Biol; 2012 Dec; 57(23):7973-81. PubMed ID: 23154664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of photon migration depths with time-resolved spectroscopy.
    Cui W; Wang N; Chance B
    Opt Lett; 1991 Nov; 16(21):1632-4. PubMed ID: 19784091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of refractive index matching on the photon diffuse reflectance.
    Churmakov DY; Meglinski IV; Greenhalgh DA
    Phys Med Biol; 2002 Dec; 47(23):4271-85. PubMed ID: 12502049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method.
    Martelli F; Zaccanti G
    Opt Express; 2007 Jan; 15(2):486-500. PubMed ID: 19532267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.