These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12502072)

  • 1. Degradation of phenol using tyrosinase immobilized on siliceous supports.
    Seetharam GB; Saville BA
    Water Res; 2003 Jan; 37(2):436-40. PubMed ID: 12502072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of tyrosinase on chitosan-clay composite beads.
    Dinçer A; Becerik S; Aydemir T
    Int J Biol Macromol; 2012 Apr; 50(3):815-20. PubMed ID: 22155214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of tyrosinase on modified diatom biosilica: enzymatic removal of phenolic compounds from aqueous solution.
    Bayramoglu G; Akbulut A; Arica MY
    J Hazard Mater; 2013 Jan; 244-245():528-36. PubMed ID: 23245881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IAL-CHS (internal airlift loop--ceramic honeycomb supports) reactor used for biodegradation of 2,4-dichlorophenol and phenol.
    Zhang Y; Quan X; Rittmann BE; Wang J; Shi H; Qian Y; Yu J
    Water Sci Technol; 2004; 49(11-12):247-54. PubMed ID: 15303748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water purification through bioconversion of phenol compounds by tyrosinase and chemical adsorption by chitosan beads.
    Yamada K; Akiba Y; Shibuya T; Kashiwada A; Matsuda K; Hirata M
    Biotechnol Prog; 2005; 21(3):823-9. PubMed ID: 15932262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of halophilic yeast for effective removal of phenol in hypersaline conditions.
    Jiang Y; Yang K; Deng T; Ji B; Shang Y; Wang H
    Water Sci Technol; 2018 Feb; 77(3-4):706-713. PubMed ID: 29431715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioproduction, purification, partial characterization and phenol removal efficacy of tyrosinase enzyme from Streptomyces sp. strain MR28.
    Rudrappa M; Santosh Kumar M; Basavarajappa DS; Hiremath H; Hugar A; Almansour AI; Kantli GB; Nayaka S
    Environ Res; 2024 Jun; 251(Pt 2):118701. PubMed ID: 38508362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amperometric phenol biosensor based on covalent immobilization of tyrosinase on Au nanoparticle modified screen printed carbon electrodes.
    Nurul Karim M; Lee HJ
    Talanta; 2013 Nov; 116():991-6. PubMed ID: 24148506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of phenol biodegradation in high salt solutions.
    Peyton BM; Wilson T; Yonge DR
    Water Res; 2002 Nov; 36(19):4811-20. PubMed ID: 12448524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosinase extract from Agaricus bisporus mushroom and its in natura tissue for specific phenol removal.
    Kameda E; Langone MA; Coelho MA
    Environ Technol; 2006 Nov; 27(11):1209-15. PubMed ID: 17203602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor.
    Saravanan P; Pakshirajan K; Saha P
    Bioresour Technol; 2008 Jan; 99(1):205-9. PubMed ID: 17236761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous removal of phenol, Cu and Cd from water with corn cob silica-alginate beads.
    Shim J; Lim JM; Shea PJ; Oh BT
    J Hazard Mater; 2014 May; 272():129-36. PubMed ID: 24685529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of aqueous phenol using immobilized enzymes in a bench scale and pilot scale three-phase fluidized bed reactor.
    Ensuncho L; Alvarez-Cuenca M; Legge RL
    Bioprocess Biosyst Eng; 2005 May; 27(3):185-91. PubMed ID: 15765216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient immobilization of mushroom tyrosinase utilizing whole cells from Agaricus bisporus and its application for degradation of bisphenol A.
    Kampmann M; Boll S; Kossuch J; Bielecki J; Uhl S; Kleiner B; Wichmann R
    Water Res; 2014 Jun; 57():295-303. PubMed ID: 24727498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of high strength phenol degradation using Bacillus brevis.
    Arutchelvan V; Kanakasabai V; Elangovan R; Nagarajan S; Muralikrishnan V
    J Hazard Mater; 2006 Feb; 129(1-3):216-22. PubMed ID: 16203081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tyrosinase from Penicillium chrysogenum: Characterization and application in phenol removal from aqueous solution.
    El-Shora HM; El-Sharkawy RM
    J Gen Appl Microbiol; 2021 Feb; 66(6):323-329. PubMed ID: 33041267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite.
    Catrinescu C; Teodosiu C; Macoveanu M; Miehe-Brendlé J; Le Dred R
    Water Res; 2003 Mar; 37(5):1154-60. PubMed ID: 12553991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic mesoporous materials for removal of environmental wastes.
    Kim BC; Lee J; Um W; Kim J; Joo J; Lee JH; Kwak JH; Kim JH; Lee C; Lee H; Addleman RS; Hyeon T; Gu MB; Kim J
    J Hazard Mater; 2011 Sep; 192(3):1140-7. PubMed ID: 21752538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbiological degradation of phenol using mixed liquors of Pseudomonas putida and activated sludge.
    Annadurai G; Juang RS; Lee DJ
    Waste Manag; 2002; 22(7):703-10. PubMed ID: 12365772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation and adsorption of phenol using activated carbon immobilized with Pseudomonas putida.
    Annadurai G; Juang RS; Lee DJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002; 37(6):1133-46. PubMed ID: 12090285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.