BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 12502248)

  • 1. Heterologous nuclear and chloroplast microsatellite amplification and variation in tea, Camellia sinensis.
    Kaundun SS; Matsumoto S
    Genome; 2002 Dec; 45(6):1041-8. PubMed ID: 12502248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O. Kuntze, and differentiation between assamica and sinensis varieties.
    Kaundun SS; Matsumoto S
    Theor Appl Genet; 2003 Feb; 106(3):375-83. PubMed ID: 12589537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular evidence for maternal inheritance of the chloroplast genome in tea, Camellia sinensis (L.) O. Kuntze.
    Kaundun SS; Matsumoto S
    J Sci Food Agric; 2011 Nov; 91(14):2660-3. PubMed ID: 21769876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of novel chloroplast microsatellite markers for Miscanthus species (Poaceae).
    Jiang JX; Wang ZH; Tang BR; Xiao L; Ai X; Yi ZL
    Am J Bot; 2012 Jun; 99(6):e230-3. PubMed ID: 22615308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear- and chloroplast-microsatellite variation in A-genome species of rice.
    Ishii T; Xu Y; McCouch SR
    Genome; 2001 Aug; 44(4):658-66. PubMed ID: 11550902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and cross-species transferability of 112 novel unigene-derived microsatellite markers in tea (Camellia sinensis).
    Sharma H; Kumar R; Sharma V; Kumar V; Bhardwaj P; Ahuja PS; Sharma RK
    Am J Bot; 2011 Jun; 98(6):e133-8. PubMed ID: 21653500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear and chloroplast SSR markers in Paeonia delavayi (Paeoniaceae) and cross-species amplification in P. ludlowii.
    Zhang JM; Liu J; Sun HL; Yu J; Wang JX; Zhou SL
    Am J Bot; 2011 Dec; 98(12):e346-8. PubMed ID: 22074777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microsatellite DNA and RAPD fingerprinting, identification and genetic relationships of hybrid poplar (Populus x canadensis) cultivars.
    Rajora P; Rahman H
    Theor Appl Genet; 2003 Feb; 106(3):470-7. PubMed ID: 12589547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsatellite-based genetic relationships in the genus Camellia: potential for improving cultivars.
    Caser M; Torello Marinoni D; Scariot V
    Genome; 2010 May; 53(5):384-99. PubMed ID: 20616869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and cross-species transferability of unigene-derived microsatellite markers in an edible oil woody plant, Camellia oleifera (Theaceae).
    Jia BG; Lin Q; Feng YZ; Hu XY; Tan XF; Shao FG; Zhang L
    Genet Mol Res; 2015 Jun; 14(2):6906-16. PubMed ID: 26125898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloroplast microsatellite markers in Liriodendron tulipifera (Magnoliaceae) and cross-species amplification in L. chinense.
    Yang AH; Zhang JJ; Yao XH; Huang HW
    Am J Bot; 2011 May; 98(5):e123-6. PubMed ID: 21613178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera.
    Cheng Y; de Vicente MC; Meng H; Guo W; Tao N; Deng X
    Tree Physiol; 2005 Jun; 25(6):661-72. PubMed ID: 15805086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloroplast microsatellite polymorphisms in Vitis species.
    Arroyo-García R; Lefort F; de Andrés MT; Ibáñaez J; Borrego J; Jouve N; Cabello F; Martínez-Zapater JM
    Genome; 2002 Dec; 45(6):1142-9. PubMed ID: 12502260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative chloroplast genomes: insights into the evolution of the chloroplast genome of Camellia sinensis and the phylogeny of Camellia.
    Li L; Hu Y; He M; Zhang B; Wu W; Cai P; Huo D; Hong Y
    BMC Genomics; 2021 Feb; 22(1):138. PubMed ID: 33637038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymorphic chloroplast microsatellite loci in Nelumbo (Nelumbonaceae).
    Xue J; Wang S; Zhou SL
    Am J Bot; 2012 Jun; 99(6):e240-4. PubMed ID: 22615305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of nuclear and chloroplast polymorphic microsatellites for Crossostephium chinense (Asteraceae).
    Liu L; Low SL; Sakaguchi S; Feng Y; Ge B; Konowalik K; Li P
    Mol Biol Rep; 2021 Sep; 48(9):6259-6267. PubMed ID: 34392450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloroplast microsatellite primers for cacao (Theobroma cacao) and other Malvaceae.
    Yang JY; Motilal LA; Dempewolf H; Maharaj K; Cronk QC
    Am J Bot; 2011 Dec; 98(12):e372-4. PubMed ID: 22114220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of polymorphic microsatellite markers in Camellia chekiangoleosa (Theaceae) using 454-ESTs.
    Wen Q; Xu L; Gu Y; Huang M; Xu L
    Am J Bot; 2012 May; 99(5):e203-5. PubMed ID: 22539511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small effect of fragmentation on the genetic diversity of Dalbergia monticola, an endangered tree species of the eastern forest of Madagascar, detected by chloroplast and nuclear microsatellites.
    Andrianoelina O; Favreau B; Ramamonjisoa L; Bouvet JM
    Ann Bot; 2009 Nov; 104(6):1231-42. PubMed ID: 19773273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the evolutionary characteristics between cultivated tea and its wild relatives using complete chloroplast genomes.
    Peng J; Zhao Y; Dong M; Liu S; Hu Z; Zhong X; Xu Z
    BMC Ecol Evol; 2021 Apr; 21(1):71. PubMed ID: 33931026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.