BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12502772)

  • 1. Volumetric and ionic responses of goldfish hepatocytes to anisotonic exposure and energetic limitation.
    Espelt MV; Mut PN; Amodeo G; Krumschnabel G; Schwarzbaum PJ
    J Exp Biol; 2003 Feb; 206(Pt 3):513-22. PubMed ID: 12502772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of glycolysis for the energetics of anoxia-tolerant and anoxia-intolerant teleost hepatocytes.
    Krumschnabel G; Manzl C; Schwarzbaum PJ
    Physiol Biochem Zool; 2001; 74(3):413-9. PubMed ID: 11331514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium transmembrane fluxes in anoxic hepatocytes from goldfish (Carassius auratus L.).
    Mut PN; Espelt MV; Krumschnabel G; Schwarzbaum PJ
    Comp Biochem Physiol C Toxicol Pharmacol; 2006; 142(3-4):205-211. PubMed ID: 16298170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volumetric response of vertebrate hepatocytes challenged by osmotic gradients: a theoretical approach.
    Espelt MV; Alleva K; Amodeo G; Krumschnabel G; Rossi RC; Schwarzbaum PJ
    Comp Biochem Physiol B Biochem Mol Biol; 2008 May; 150(1):103-11. PubMed ID: 18329306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of energy limitation on Ca2+ and K+ homeostasis in anoxia-tolerant and anoxia-intolerant hepatocytes.
    Krumschnabel G; Schwarzbaum PJ; Biasi C; Dorigatti M; Wieser W
    Am J Physiol; 1997 Jul; 273(1 Pt 2):R307-16. PubMed ID: 9249565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane-metabolic coupling and ion homeostasis in anoxia-tolerant and anoxia-intolerant hepatocytes.
    Krumschnabel G; Biasi C; Schwarzbaum PJ; Wieser W
    Am J Physiol; 1996 Mar; 270(3 Pt 2):R614-20. PubMed ID: 8780228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of ATP release and cell volume regulation of hyposmotically challenged goldfish hepatocytes.
    Pafundo DE; Chara O; Faillace MP; Krumschnabel G; Schwarzbaum PJ
    Am J Physiol Regul Integr Comp Physiol; 2008 Jan; 294(1):R220-33. PubMed ID: 17928510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of intracellular pH in anoxia-tolerant and anoxia-intolerant teleost hepatocytes.
    Krumschnabel G; Manzl C; Schwarzbaum PJ
    J Exp Biol; 2001 Nov; 204(Pt 22):3943-51. PubMed ID: 11807112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of chemical anoxia on protein kinase C and Na+, K+-ATPase in hepatocytes of goldfish (Carassius auratus) and rainbow trout (Oncorhynchus mykiss).
    Schwarzbaum P; Bernabeu R; Krumschnabel G; Wieser C
    J Exp Biol; 1996; 199(Pt 7):1515-21. PubMed ID: 9319415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between hypotonically-induced taurine and K fluxes in trout red blood cells.
    Kiessling K; Ellory JC; Cossins AR
    Pflugers Arch; 2000 Jul; 440(3):467-75. PubMed ID: 10954334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetics of swelling in isolated hepatocytes: a comprehensive study.
    Devin A; Espié P; Guérin B; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):107-21. PubMed ID: 9746316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hyposmotic shock on ion fluxes in isolated trout hepatocytes.
    Bianchini L; Fossat B; Porthé-Nibelle J; Ellory JC; Lahlou B
    J Exp Biol; 1988 Jul; 137():303-18. PubMed ID: 3209971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action of adenosine on energetics, protein synthesis and K(+) homeostasis in teleost hepatocytes.
    Krumschnabel G; Biasi C; Wieser W
    J Exp Biol; 2000 Sep; 203(Pt 17):2657-65. PubMed ID: 10934006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osmolyte and Na+ transport balances of rat hepatocytes as a function of hypertonic stress.
    Wehner F; Tinel H
    Pflugers Arch; 2000 Nov; 441(1):12-24. PubMed ID: 11205050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of K+ homeostasis in trout hepatocytes during chemical anoxia: a screening study for potential causes and mechanisms.
    Krumschnabel G; Frischmann ME; Schwarzbaum PJ; Wieser W
    Arch Biochem Biophys; 1998 May; 353(2):199-206. PubMed ID: 9606953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of p38(MAPK) in cell volume regulation of perfused rat liver.
    vom Dahl S; Schliess F; Graf D; Häussinger D
    Cell Physiol Biochem; 2001; 11(6):285-94. PubMed ID: 11832654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of extracellular nucleotides and their hydrolysis products on regulatory volume decrease of trout hepatocytes.
    Pafundo DE; Mut P; Pérez Recalde M; González-Lebrero RM; Fachino V; Krumschnabel G; Schwarzbaum PJ
    Am J Physiol Regul Integr Comp Physiol; 2004 Oct; 287(4):R833-43. PubMed ID: 15217790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mechanism for regulatory volume decrease in cultured lens epithelial cells.
    Diecke FP; Beyer-Mears A
    Curr Eye Res; 1997 Apr; 16(4):279-88. PubMed ID: 9134315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell volume-induced changes in K+ transport across the rat colon.
    Ribeiro R; Heinke B; Diener M
    Acta Physiol Scand; 2001 Apr; 171(4):445-58. PubMed ID: 11421860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of cytoskeletal elements in volume regulatory responses of trout hepatocytes.
    Ebner HL; Cordas A; Pafundo DE; Schwarzbaum PJ; Pelster B; Krumschnabel G
    Am J Physiol Regul Integr Comp Physiol; 2005 Sep; 289(3):R877-90. PubMed ID: 15905223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.