These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12503174)

  • 1. Electrical interfacing of nerve cells and semiconductor chips.
    Fromherz P
    Chemphyschem; 2002 Mar; 3(3):276-84. PubMed ID: 12503174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three levels of neuroelectronic interfacing: silicon chips with ion channels, nerve cells, and brain tissue.
    Fromherz P
    Ann N Y Acad Sci; 2006 Dec; 1093():143-60. PubMed ID: 17312257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon chip with capacitors and transistors for interfacing organotypic brain slice of rat hippocampus.
    Hutzler M; Fromherz P
    Eur J Neurosci; 2004 Apr; 19(8):2231-8. PubMed ID: 15090049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacing a silicon chip to pairs of snail neurons connected by electrical synapses.
    Jenkner M; Müller B; Fromherz P
    Biol Cybern; 2001 Apr; 84(4):239-49. PubMed ID: 11324335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromorphic hardware databases for exploring structure-function relationships in the brain.
    Breslin C; O'Lenskie A
    Philos Trans R Soc Lond B Biol Sci; 2001 Aug; 356(1412):1249-58. PubMed ID: 11545701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of electrical activity of long-term mammalian neuronal networks on semiconductor neurosensor chips and comparison with conventional microelectrode arrays.
    Krause G; Lehmann S; Lehmann M; Freund I; Schreiber E; Baumann W
    Biosens Bioelectron; 2006 Jan; 21(7):1272-82. PubMed ID: 16006112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and theoretical analysis of neuron-transistor hybrid electrical coupling: the relationships between the electro-anatomy of cultured Aplysia neurons and the recorded field potentials.
    Cohen A; Shappir J; Yitzchaik S; Spira ME
    Biosens Bioelectron; 2006 Dec; 22(5):656-63. PubMed ID: 16574399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CMOS neuroelectronic interface based on two-dimensional transistor arrays with monolithically-integrated circuitry.
    Chang CH; Chang SR; Lin JS; Lee YT; Yeh SR; Chen H
    Biosens Bioelectron; 2009 Feb; 24(6):1757-64. PubMed ID: 18951013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive neuroelectronic interfacing with synaptically connected snail neurons immobilized on a semiconductor chip.
    Zeck G; Fromherz P
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10457-62. PubMed ID: 11526244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal networks and synaptic plasticity: understanding complex system dynamics by interfacing neurons with silicon technologies.
    Colicos MA; Syed NI
    J Exp Biol; 2006 Jun; 209(Pt 12):2312-9. PubMed ID: 16731807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lymnaea stagnalis and the development of neuroelectronic technologies.
    Birmingham JT; Graham DM; Tauck DL
    J Neurosci Res; 2004 May; 76(3):277-81. PubMed ID: 15079856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical interfacing between neurons and electronics via vertically integrated sub-4 microm-diameter silicon probe arrays fabricated by vapor-liquid-solid growth.
    Kawano T; Harimoto T; Ishihara A; Takei K; Kawashima T; Usui S; Ishida M
    Biosens Bioelectron; 2010 Mar; 25(7):1809-15. PubMed ID: 20089393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-to-one neuron-electrode interfacing.
    Greenbaum A; Anava S; Ayali A; Shein M; David-Pur M; Ben-Jacob E; Hanein Y
    J Neurosci Methods; 2009 Sep; 182(2):219-24. PubMed ID: 19540264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: lab-on-a-chip system for lipid membranes and ion channels.
    Quist AP; Chand A; Ramachandran S; Daraio C; Jin S; Lal R
    Langmuir; 2007 Jan; 23(3):1375-80. PubMed ID: 17241061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible transition of extracellular field potential recordings to intracellular recordings of action potentials generated by neurons grown on transistors.
    Cohen A; Shappir J; Yitzchaik S; Spira ME
    Biosens Bioelectron; 2008 Jan; 23(6):811-9. PubMed ID: 17959368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays.
    Shein M; Greenbaum A; Gabay T; Sorkin R; David-Pur M; Ben-Jacob E; Hanein Y
    Biomed Microdevices; 2009 Apr; 11(2):495-501. PubMed ID: 19067173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal transmission from individual mammalian nerve cell to field-effect transistor.
    Voelker M; Fromherz P
    Small; 2005 Feb; 1(2):206-10. PubMed ID: 17193431
    [No Abstract]   [Full Text] [Related]  

  • 18. Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks.
    Berdondini L; Imfeld K; Maccione A; Tedesco M; Neukom S; Koudelka-Hep M; Martinoia S
    Lab Chip; 2009 Sep; 9(18):2644-51. PubMed ID: 19704979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable molecular modulation of conductivity in silicon-based devices.
    He T; Corley DA; Lu M; Di Spigna NH; He J; Nackashi DP; Franzon PD; Tour JM
    J Am Chem Soc; 2009 Jul; 131(29):10023-30. PubMed ID: 19569647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined topographical and chemical micropatterns for templating neuronal networks.
    Zhang J; Venkataramani S; Xu H; Song YK; Song HK; Palmore GT; Fallon J; Nurmikko AV
    Biomaterials; 2006 Nov; 27(33):5734-9. PubMed ID: 16905186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.