These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 12503494)

  • 41. Physical characterization of a watershed through GIS: a study in the Schmidt stream, Brazil.
    Reis DR; Plangg R; Tundisi JG; Quevedo DM
    Braz J Biol; 2015 Dec; 75(4 Suppl 2):S16-29. PubMed ID: 26628241
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Review of Watershed-Scale Water Quality and Nonpoint Source Pollution Models.
    Yuan L; Sinshaw T; Forshay KJ
    Geosciences (Basel); 2020 Jan; 10(25):1-36. PubMed ID: 32983579
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatially Varying and Scale-Dependent Relationships of Land Use Types with Stream Water Quality.
    Park SR; Lee SW
    Int J Environ Res Public Health; 2020 Mar; 17(5):. PubMed ID: 32143416
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of watershed land use on water quality: a case study in Córrego da Olaria Basin, São Paulo State, Brazil.
    Simedo MBL; Martins ALM; Pissarra TCT; Lopes MC; Costa RCA; Valle-Junior RF; Campanelli LC; Rojas NET; Finoto EL
    Braz J Biol; 2018 Nov; 78(4):625-635. PubMed ID: 29412244
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A spatially explicit framework for quantifying downstream hydrologic conditions.
    Strager MP; Petty JT; Strager JM; Barker-Fulton J
    J Environ Manage; 2009 Apr; 90(5):1854-61. PubMed ID: 19155121
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Soil erosion and non-point source pollution impacts assessment with the aid of multi-temporal remote sensing images.
    Ning SK; Chang NB; Jeng KY; Tseng YH
    J Environ Manage; 2006 Apr; 79(1):88-101. PubMed ID: 16182435
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of impacts of land use changes on surface water using L-THIA model (case study: Zayandehrud river basin).
    Mirzaei M; Solgi E; Salmanmahiny A
    Environ Monit Assess; 2016 Dec; 188(12):690. PubMed ID: 27885617
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Establishing aquatic restoration priorities using a watershed approach.
    Bohn BA; Kershner JL
    J Environ Manage; 2002 Apr; 64(4):355-63. PubMed ID: 12141156
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An integrated modeling approach for estimating hydrologic responses to future urbanization and climate changes in a mixed-use midwestern watershed.
    Sunde MG; He HS; Hubbart JA; Urban MA
    J Environ Manage; 2018 Aug; 220():149-162. PubMed ID: 29777998
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The SOIL-N/WEKU model system--a GIS-supported tool for the assessment and management of diffuse nitrogen leaching at the scale of river basins.
    Wendland F; Kunkel R; Grimvall A; Kronvang B; Müller-Wohlfeil DI
    Water Sci Technol; 2002; 45(9):285-92. PubMed ID: 12079115
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluating river water quality through land use analysis and N budget approaches in livestock farming areas.
    Woli KP; Nagumo T; Kuramochi K; Hatano R
    Sci Total Environ; 2004 Aug; 329(1-3):61-74. PubMed ID: 15262158
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Associating the spatial properties of a watershed with downstream Chl-a concentration using spatial analysis and generalized additive models.
    Kim JH; Lee DH; Kang JH
    Water Res; 2019 May; 154():387-401. PubMed ID: 30822599
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative evaluation of runoff and water quality using HSPF and SWMM.
    Lee SB; Yoon CG; Jung KW; Hwang HS
    Water Sci Technol; 2010; 62(6):1401-9. PubMed ID: 20861556
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ag-PIE: a GIS-based screening model for assessing agricultural pressures and impacts on water quality on a European scale.
    Giupponi C; Vladimirova I
    Sci Total Environ; 2006 Apr; 359(1-3):57-75. PubMed ID: 16181658
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of a HEC-HMS-based watershed modeling system for identification, allocation, and optimization of reservoirs in a river basin.
    Srinivas R; Singh AP; Deshmukh A
    Environ Monit Assess; 2017 Dec; 190(1):31. PubMed ID: 29260336
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stochastic structures between quantity and quality responses of rainfall-runoff at an upland agricultural watershed.
    Kim SH; Delleur JW
    Water Sci Technol; 2001; 44(7):91-104. PubMed ID: 11724501
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A pesticide runoff model for simulating runoff losses of pesticides from agricultural lands.
    Li YR; Huang GH; Li YF; Struger J; Fischer JD
    Water Sci Technol; 2003; 47(1):33-40. PubMed ID: 12578171
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The applications of GIS in the analysis of the impacts of human activities on south Texas watersheds.
    Merem EC; Yerramilli S; Twumasi YA; Wesley JM; Robinson B; Richardson C
    Int J Environ Res Public Health; 2011 Jun; 8(6):2418-46. PubMed ID: 21776238
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimation of pollutant loads considering dam operation in Han River Basin by BASINS/Hydrological Simulation Program-FORTRAN.
    Jung KW; Yoon CG; Jang JH; Kong DS
    Water Sci Technol; 2008; 58(12):2329-38. PubMed ID: 19092211
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Effects of sub-watershed landscape patterns at the upper reaches of Minjiang River on soil erosion].
    Yang M; Li XZ; Yang ZP; Hu YM; Wen QC
    Ying Yong Sheng Tai Xue Bao; 2007 Nov; 18(11):2512-9. PubMed ID: 18260457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.