These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 12503526)
1. Roller compaction and tabletting of St. John's wort plant dry extract using a gap width and force controlled roller compactor. II. Study of roller compaction variables on granule and tablet properties by a 3(3) factorial design. von Eggelkraut-Gottanka SG; Abed SA; Müller W; Schmidt PC Pharm Dev Technol; 2002 Nov; 7(4):447-55. PubMed ID: 12503526 [TBL] [Abstract][Full Text] [Related]
2. Roller compaction and tabletting of St. John's wort plant dry extract using a gap width and force controlled roller compactor. I. Granulation and tabletting of eight different extract batches. von Eggelkraut-Gottanka SG; Abed SA; Müller W; Schmidt PC Pharm Dev Technol; 2002 Nov; 7(4):433-45. PubMed ID: 12503525 [TBL] [Abstract][Full Text] [Related]
3. Improving the content uniformity of a low-dose tablet formulation through roller compaction optimization. am Ende MT; Moses SK; Carella AJ; Gadkari RA; Graul TW; Otano AL; Timpano RJ Pharm Dev Technol; 2007; 12(4):391-404. PubMed ID: 17763144 [TBL] [Abstract][Full Text] [Related]
4. Mechanistic study of the effect of roller compaction and lubricant on tablet mechanical strength. He X; Secreast PJ; Amidon GE J Pharm Sci; 2007 May; 96(5):1342-55. PubMed ID: 17455360 [TBL] [Abstract][Full Text] [Related]
5. Comparative binder efficiency modeling of dry granulation binders using roller compaction. Gupte A; DeHart M; Stagner WC; Haware RV Drug Dev Ind Pharm; 2017 Apr; 43(4):574-583. PubMed ID: 27977316 [TBL] [Abstract][Full Text] [Related]
6. Effects of roller compaction settings on the preparation of bioadhesive granules and ocular minitablets. Weyenberg W; Vermeire A; Vandervoort J; Remon JP; Ludwig A Eur J Pharm Biopharm; 2005 Apr; 59(3):527-36. PubMed ID: 15760734 [TBL] [Abstract][Full Text] [Related]
7. Dry granulation and compression of spray-dried plant extracts. Soares LA; González Ortega G; Petrovick PR; Schmidt PC AAPS PharmSciTech; 2005 Oct; 6(3):E359-66. PubMed ID: 16353993 [TBL] [Abstract][Full Text] [Related]
8. The evaluation of fine-particle hydroxypropylcellulose as a roller compaction binder in pharmaceutical applications. Skinner GW; Harcum WW; Barnum PE; Guo JH Drug Dev Ind Pharm; 1999 Oct; 25(10):1121-8. PubMed ID: 10529893 [TBL] [Abstract][Full Text] [Related]
9. Predicting the critical quality attributes of ibuprofen tablets via modelling of process parameters for roller compaction and tabletting. Matji A; Donato N; Gagol A; Morales E; Carvajal L; Serrano DR; Worku ZA; Healy AM; Torrado JJ Int J Pharm; 2019 Jun; 565():209-218. PubMed ID: 31075438 [TBL] [Abstract][Full Text] [Related]
10. Differential compaction behaviour of roller compacted granules of clopidogrel bisulphate polymorphs. Khomane KS; Bansal AK Int J Pharm; 2014 Sep; 472(1-2):288-95. PubMed ID: 24971694 [TBL] [Abstract][Full Text] [Related]
11. An investigation into the impact of magnesium stearate on powder feeding during roller compaction. Dawes J; Gamble JF; Greenwood R; Robbins P; Tobyn M Drug Dev Ind Pharm; 2012 Jan; 38(1):111-22. PubMed ID: 21810064 [TBL] [Abstract][Full Text] [Related]
12. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation. Mosig J; Kleinebudde P J Pharm Sci; 2015 Mar; 104(3):1108-18. PubMed ID: 25558976 [TBL] [Abstract][Full Text] [Related]
13. Measuring the distribution of density and tabletting force in pharmaceutical tablets by chemical imaging. Ellison CD; Ennis BJ; Hamad ML; Lyon RC J Pharm Biomed Anal; 2008 Sep; 48(1):1-7. PubMed ID: 18539424 [TBL] [Abstract][Full Text] [Related]
14. Multiple compaction of microcrystalline cellulose in a roller compactor. Bultmann JM Eur J Pharm Biopharm; 2002 Jul; 54(1):59-64. PubMed ID: 12084503 [TBL] [Abstract][Full Text] [Related]
15. Investigation on the effect of roller compaction on paracetamol. Tay JYS; Han QE; Liew CV; Sia Heng PW Pharm Dev Technol; 2020 Jan; 25(1):100-106. PubMed ID: 31583937 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous Comparison of Two Roller Compaction Techniques and Two Particle Size Analysis Methods. Saarinen T; Antikainen O; Yliruusi J AAPS PharmSciTech; 2017 Nov; 18(8):3198-3207. PubMed ID: 28540484 [TBL] [Abstract][Full Text] [Related]
17. Use of roller compaction and fines recycling process in the preparation of erlotinib hydrochloride tablets. Hwang KM; Kim SY; Nguyen TT; Cho CH; Park ES Eur J Pharm Sci; 2019 Apr; 131():99-110. PubMed ID: 30716380 [TBL] [Abstract][Full Text] [Related]
18. Terahertz time-domain spectroscopy for the investigation of tablets prepared from roller compacted granules. Anuschek M; Skelbæk-Pedersen AL; Kvistgaard Vilhelmsen T; Skibsted E; Zeitler JA; Rantanen J Int J Pharm; 2023 Jul; 642():123165. PubMed ID: 37356510 [TBL] [Abstract][Full Text] [Related]
19. The influence of API concentration on the roller compaction process: modeling and prediction of the post compacted ribbon, granule and tablet properties using multivariate data analysis. Boersen N; Carvajal MT; Morris KR; Peck GE; Pinal R Drug Dev Ind Pharm; 2015; 41(9):1470-8. PubMed ID: 25212638 [TBL] [Abstract][Full Text] [Related]
20. Roller compaction of different pseudopolymorphic forms of theophylline: Effect on compressibility and tablet properties. Hadzović E; Betz G; Hadzidedić S; El-Arini SK; Leuenberger H Int J Pharm; 2010 Aug; 396(1-2):53-62. PubMed ID: 20600735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]