These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 12503743)

  • 1. Development and application of a generalized physiologically based pharmacokinetic model for multiple environmental contaminants.
    Cahill TM; Cousins I; Mackay D
    Environ Toxicol Chem; 2003 Jan; 22(1):26-34. PubMed ID: 12503743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative evaluation of alternative mechanisms of blood disposition of di(n-butyl) phthalate and mono(n-butyl) phthalate in rats.
    Keys DA; Wallace DG; Kepler TB; Conolly RB
    Toxicol Sci; 2000 Feb; 53(2):173-84. PubMed ID: 10696765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An approach for integrating toxicogenomic data in risk assessment: the dibutyl phthalate case study.
    Euling SY; Thompson CM; Chiu WA; Benson R
    Toxicol Appl Pharmacol; 2013 Sep; 271(3):324-35. PubMed ID: 23537663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure assessment of phthalates in French pregnant women: results of the ELFE pilot study.
    Zeman FA; Boudet C; Tack K; Floch Barneaud A; Brochot C; Péry AR; Oleko A; Vandentorren S
    Int J Hyg Environ Health; 2013 Jun; 216(3):271-9. PubMed ID: 23394847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSARs for PBPK modelling of environmental contaminants.
    Peyret T; Krishnan K
    SAR QSAR Environ Res; 2011 Mar; 22(1-2):129-69. PubMed ID: 21391145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproductive and developmental toxicity of phthalates.
    Lyche JL; Gutleb AC; Bergman A; Eriksen GS; Murk AJ; Ropstad E; Saunders M; Skaare JU
    J Toxicol Environ Health B Crit Rev; 2009 Apr; 12(4):225-49. PubMed ID: 20183522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mono-(3-carboxypropyl) phthalate, a metabolite of di-n-octyl phthalate.
    Calafat AM; Silva MJ; Reidy JA; Earl Gray L; Samandar E; Preau JL; Herbert AR; Needham LL
    J Toxicol Environ Health A; 2006 Feb; 69(3-4):215-27. PubMed ID: 16263692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)--application of steady-state PBPK model solutions.
    Aylward LL; Kirman CR; Blount BC; Hays SM
    Regul Toxicol Pharmacol; 2010 Oct; 58(1):33-44. PubMed ID: 20685286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimated daily intake of phthalates in occupationally exposed groups.
    Hines CJ; Hopf NB; Deddens JA; Silva MJ; Calafat AM
    J Expo Sci Environ Epidemiol; 2011; 21(2):133-41. PubMed ID: 20010977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results.
    Jongeneelen FJ; Berge WF
    Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical behavior of phthalates under abiotic conditions in landfills.
    Huang J; Nkrumah PN; Li Y; Appiah-Sefah G
    Rev Environ Contam Toxicol; 2013; 224():39-52. PubMed ID: 23232918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the human kinetic adjustment factor for the health risk assessment of environmental contaminants.
    Valcke M; Krishnan K
    J Appl Toxicol; 2014 Mar; 34(3):227-40. PubMed ID: 24038072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomonitoring of phthalate metabolites in the Canadian population through the Canadian Health Measures Survey (2007-2009).
    Saravanabhavan G; Guay M; Langlois É; Giroux S; Murray J; Haines D
    Int J Hyg Environ Health; 2013 Nov; 216(6):652-61. PubMed ID: 23419587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple pharmacokinetic model to characterize exposure of Americans to di-2-ethylhexyl phthalate.
    Lorber M; Angerer J; Koch HM
    J Expo Sci Environ Epidemiol; 2010 Jan; 20(1):38-53. PubMed ID: 19127283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaches for applications of physiologically based pharmacokinetic models in risk assessment.
    Thompson CM; Sonawane B; Barton HA; DeWoskin RS; Lipscomb JC; Schlosser P; Chiu WA; Krishnan K
    J Toxicol Environ Health B Crit Rev; 2008 Aug; 11(7):519-47. PubMed ID: 18584453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological modeling and extrapolation of pharmacokinetic interactions from binary to more complex chemical mixtures.
    Krishnan K; Haddad S; Béliveau M; Tardif R
    Environ Health Perspect; 2002 Dec; 110 Suppl 6(Suppl 6):989-94. PubMed ID: 12634130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Derivation of Biomonitoring Equivalents for di-n-butyl phthalate (DBP), benzylbutyl phthalate (BzBP), and diethyl phthalate (DEP).
    Aylward LL; Hays SM; Gagné M; Krishnan K
    Regul Toxicol Pharmacol; 2009 Dec; 55(3):259-67. PubMed ID: 19751787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of phthalate metabolites in human saliva.
    Silva MJ; Reidy JA; Samandar E; Herbert AR; Needham LL; Calafat AM
    Arch Toxicol; 2005 Nov; 79(11):647-52. PubMed ID: 15995852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a physiologically based pharmacokinetic model for inhalation of jet fuels in the rat.
    Martin SA; Campbell JL; Tremblay RT; Fisher JW
    Inhal Toxicol; 2012 Jan; 24(1):1-26. PubMed ID: 22188408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.