BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12503777)

  • 1. Improving signal reliability for on-line joint angle estimation from nerve cuff recordings of muscle afferents.
    Jensen W; Sinkjaer T; Sepulveda F
    IEEE Trans Neural Syst Rehabil Eng; 2002 Sep; 10(3):133-9. PubMed ID: 12503777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of initial joint position on nerve-cuff recordings of muscle afferents in rabbits.
    Jensen W; Lawrence SM; Riso RR; Sinkjaer T
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):265-73. PubMed ID: 11561662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the intersubject generalization ability in extracting kinematic information from afferent nervous signals.
    Cavallaro E; Micera S; Dario P; Jensen W; Sinkjaer T
    IEEE Trans Biomed Eng; 2003 Sep; 50(9):1063-73. PubMed ID: 12943274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory nerve recording for closed-loop control to restore motor functions.
    Popović DB; Stein RB; Jovanović KL; Dai R; Kostov A; Armstrong WW
    IEEE Trans Biomed Eng; 1993 Oct; 40(10):1024-31. PubMed ID: 8294127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuro-fuzzy extraction of angular information from muscle afferents for ankle control during standing in paraplegic subjects: an animal model.
    Micera S; Jensen W; Sepulveda F; Riso RR; Sinkjaer T
    IEEE Trans Biomed Eng; 2001 Jul; 48(7):787-94. PubMed ID: 11442290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Closed-loop control of ankle position using muscle afferent feedback with functional neuromuscular stimulation.
    Yoshida K; Horch K
    IEEE Trans Biomed Eng; 1996 Feb; 43(2):167-76. PubMed ID: 8682528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nerve cuff recordings of muscle afferent activity from tibial and peroneal nerves in rabbit during passive ankle motion.
    Riso RR; Mosallaie FK; Jensen W; Sinkjaer T
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):244-58. PubMed ID: 10896197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-based ankle joint angle tracing by cuff electrode recordings of peroneal and tibial nerves.
    Lin CC; Ju MS; Cheng HS
    Med Biol Eng Comput; 2007 Apr; 45(4):375-85. PubMed ID: 17273879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretation of muscle spindle afferent nerve response to passive muscle stretch recorded with thin-film longitudinal intrafascicular electrodes.
    Djilas M; Azevedo-Coste C; Guiraud D; Yoshida K
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):445-53. PubMed ID: 19775988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ankle-Angle Estimation from Blind Source Separated Afferent Activity in the Sciatic Nerve for Closed-Loop Functional Neuromuscular Stimulation System.
    Song KI; Chu JU; Park SE; Hwang D; Youn I
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):834-843. PubMed ID: 27323354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Afferents contributing to autogenic inhibition of gastrocnemius following electrical stimulation of its tendon.
    Khan SI; Burne JA
    Brain Res; 2009 Jul; 1282():28-37. PubMed ID: 19414002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of peroneal and tibial afferent activity from a multichannel cuff placed on the sciatic nerve.
    Cheng HS; Ju MS; Lin CC
    Muscle Nerve; 2005 Nov; 32(5):589-99. PubMed ID: 16094652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of isometric antagonist coactivation strategies of electrically stimulated muscles.
    Zhou BH; Baratta RV; Solomonow M; Olivier LJ; D'Ambrosia RD
    IEEE Trans Biomed Eng; 1996 Feb; 43(2):150-60. PubMed ID: 8682526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An implantable wireless system for muscle afferent recording from the sciatic nerve during functional electrical stimulation.
    Song KI; Shon A; Chu JU; Choi K; Hwang D; Youn I
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3610-3. PubMed ID: 24110511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint angle control by FES using a feedback error learning controller.
    Kurosawa K; Futami R; Watanabe T; Hoshimiya N
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):359-71. PubMed ID: 16200759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of joint torque evoked with monopolar and tripolar-cuff electrodes.
    Tarler MD; Mortimer JT
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):227-35. PubMed ID: 14518785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural network and fuzzy control in FES-assisted locomotion for the hemiplegic.
    Chen YL; Chen SC; Chen WL; Hsiao CC; Kuo TS; Lai JS
    J Med Eng Technol; 2004; 28(1):32-8. PubMed ID: 14660183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Open-loop tracking performance of a limb joint controlled by random, periodic, and abrupt electrical stimulation inputs to the antagonist muscle pair.
    Zhou BH; Baratta RV; Solomonow M; Matsushita N; D'Ambrosia RD
    IEEE Trans Biomed Eng; 1998 Apr; 45(4):511-9. PubMed ID: 9556968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ankle joint position and electrode placement on the estimation of the antagonistic moment during maximal plantarflexion.
    Mademli L; Arampatzis A; Morey-Klapsing G; Brüggemann GP
    J Electromyogr Kinesiol; 2004 Oct; 14(5):591-7. PubMed ID: 15301777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of ankle joint angle from peroneal and tibial electroneurograms based on muscle spindle model.
    Lin CC; Ju MS; Chan CC
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2362-6. PubMed ID: 21097227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.