These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12504012)

  • 21. DNA recognition sites activate MuA transposase to perform transposition of non-Mu DNA.
    Goldhaber-Gordon I; Williams TL; Baker TA
    J Biol Chem; 2002 Mar; 277(10):7694-702. PubMed ID: 11756423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway.
    Levchenko I; Yamauchi M; Baker TA
    Genes Dev; 1997 Jun; 11(12):1561-72. PubMed ID: 9203582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elucidating the Architectural dynamics of MuB filaments in bacteriophage Mu DNA transposition.
    Zhao X; Gao Y; Gong Q; Zhang K; Li S
    Nat Commun; 2024 Jul; 15(1):6445. PubMed ID: 39085263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions of phage Mu enhancer and termini that specify the assembly of a topologically unique interwrapped transpososome.
    Yin Z; Suzuki A; Lou Z; Jayaram M; Harshey RM
    J Mol Biol; 2007 Sep; 372(2):382-96. PubMed ID: 17669422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Mu three-site synapse: a strained assembly platform in which delivery of the L1 transposase binding site triggers catalytic commitment.
    Kobryn K; Watson MA; Allison RG; Chaconas G
    Mol Cell; 2002 Sep; 10(3):659-69. PubMed ID: 12408832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Host factors that promote transpososome disassembly and the PriA-PriC pathway for restart primosome assembly.
    North SH; Nakai H
    Mol Microbiol; 2005 Jun; 56(6):1601-16. PubMed ID: 15916609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The N-terminal domain of MuB protein has striking structural similarity to DNA-binding domains and mediates MuB filament-filament interactions.
    Dramićanin M; López-Méndez B; Boskovic J; Campos-Olivas R; Ramón-Maiques S
    J Struct Biol; 2015 Aug; 191(2):100-11. PubMed ID: 26169224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The wing of the enhancer-binding domain of Mu phage transposase is flexible and is essential for efficient transposition.
    Clubb RT; Mizuuchi M; Huth JR; Omichinski JG; Savilahti H; Mizuuchi K; Clore GM; Gronenborn AM
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1146-50. PubMed ID: 8577730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome.
    Abdelhakim AH; Sauer RT; Baker TA
    Proc Natl Acad Sci U S A; 2010 Feb; 107(6):2437-42. PubMed ID: 20133746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mu transpositional recombination: donor DNA cleavage and strand transfer in trans by the Mu transposase.
    Savilahti H; Mizuuchi K
    Cell; 1996 Apr; 85(2):271-80. PubMed ID: 8612279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Criss-crossed interactions between the enhancer and the att sites of phage Mu during DNA transposition.
    Jiang H; Yang JY; Harshey RM
    EMBO J; 1999 Jul; 18(13):3845-55. PubMed ID: 10393199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Mu transposase interwraps distant DNA sites within a functional transpososome in the absence of DNA supercoiling.
    Yin Z; Jayaram M; Pathania S; Harshey RM
    J Biol Chem; 2005 Feb; 280(7):6149-56. PubMed ID: 15563455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The conserved CA/TG motif at Mu termini: T specifies stable transpososome assembly.
    Lee I; Harshey RM
    J Mol Biol; 2003 Jul; 330(2):261-75. PubMed ID: 12823966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MuB gives a new twist to target DNA selection.
    Dramićanin M; Ramón-Maiques S
    Mob Genet Elements; 2013 Sep; 3(5):e27515. PubMed ID: 24478936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MuA transposase separates DNA sequence recognition from catalysis.
    Goldhaber-Gordon I; Early MH; Baker TA
    Biochemistry; 2003 Dec; 42(49):14633-42. PubMed ID: 14661976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disassembly of the Mu transposase tetramer by the ClpX chaperone.
    Levchenko I; Luo L; Baker TA
    Genes Dev; 1995 Oct; 9(19):2399-408. PubMed ID: 7557391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Altering the DNA-binding specificity of Mu transposase in vitro.
    Namgoong SY; Sankaralingam S; Harshey RM
    Nucleic Acids Res; 1998 Aug; 26(15):3521-7. PubMed ID: 9671813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA-promoted assembly of the active tetramer of the Mu transposase.
    Baker TA; Mizuuchi K
    Genes Dev; 1992 Nov; 6(11):2221-32. PubMed ID: 1330829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ClpX protein of Escherichia coli activates bacteriophage Mu transposase in the strand transfer complex for initiation of Mu DNA synthesis.
    Kruklitis R; Welty DJ; Nakai H
    EMBO J; 1996 Feb; 15(4):935-44. PubMed ID: 8631314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mu transpososome and RecBCD nuclease collaborate in the repair of simple Mu insertions.
    Choi W; Jang S; Harshey RM
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14112-7. PubMed ID: 25197059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.