These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12504675)

  • 21. A dual cellular-heterogeneous catalyst strategy for the production of olefins from glucose.
    Wang ZQ; Song H; Koleski EJ; Hara N; Park DS; Kumar G; Min Y; Dauenhauer PJ; Chang MCY
    Nat Chem; 2021 Dec; 13(12):1178-1185. PubMed ID: 34811478
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binding of the enzymes of fatty acid beta-oxidation and some related enzymes to pig heart inner mitochondrial membrane.
    Sumegi B; Srere PA
    J Biol Chem; 1984 Jul; 259(14):8748-52. PubMed ID: 6378901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial beta-oxidation.
    Schulz H
    Prog Clin Biol Res; 1990; 321():23-36. PubMed ID: 2183234
    [No Abstract]   [Full Text] [Related]  

  • 24. Inducible beta-oxidation pathway in Neurospora crassa.
    Kionka C; Kunau WH
    J Bacteriol; 1985 Jan; 161(1):153-7. PubMed ID: 3155714
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impairment of peroxisomal beta-oxidation system by endotoxin treatment.
    Dhaunsi GS; Hanevold CD; Singh I
    Mol Cell Biochem; 1994 Jun; 135(2):187-93. PubMed ID: 7838145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of their coenzyme A esters on enzymes of fatty acid oxidation.
    Holland PC; Senior AE; Sherratt HS
    Biochem J; 1973 Sep; 136(1):173-84. PubMed ID: 4797895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The crystal structure of dienoyl-CoA isomerase at 1.5 A resolution reveals the importance of aspartate and glutamate sidechains for catalysis.
    Modis Y; Filppula SA; Novikov DK; Norledge B; Hiltunen JK; Wierenga RK
    Structure; 1998 Aug; 6(8):957-70. PubMed ID: 9739087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural classification and properties of ketoacyl reductases, hydroxyacyl dehydratases and enoyl reductases.
    Cantu DC; Dai T; Beversdorf ZS; Reilly PJ
    Protein Eng Des Sel; 2012 Dec; 25(12):803-11. PubMed ID: 22915596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterisation of a novel enzyme of human fatty acid beta-oxidation: a matrix-associated, mitochondrial 2-enoyl-CoA hydratase.
    Jackson S; Schaefer J; Middleton B; Turnbull DM
    Biochem Biophys Res Commun; 1995 Sep; 214(1):247-53. PubMed ID: 7669045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The microbial degradation of cyclohexanecarboxylic acid by a beta-oxidation pathway with simultaneous induction to the utilization of benzoate.
    Blakley ER
    Can J Microbiol; 1978 Jul; 24(7):847-55. PubMed ID: 679070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glutamate-119 of the large alpha-subunit is the catalytic base in the hydration of 2-trans-enoyl-coenzyme A catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli.
    He XY; Yang SY
    Biochemistry; 1997 Sep; 36(36):11044-9. PubMed ID: 9283097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Substrate-channelling mechanism of a fatty acid beta-oxidation multienzyme complex].
    Ishikawa M; Tsuchiya D; Morikawa K
    Tanpakushitsu Kakusan Koso; 2005 Aug; 50(10 Suppl):1197-204. PubMed ID: 16104585
    [No Abstract]   [Full Text] [Related]  

  • 33. Involvement of one of two enoyl-CoA hydratases and enoyl-CoA reductase in the acetyl-CoA-dependent elongation of medium chain fatty acids by Mycobacterium smegmatis.
    Shimakata T; Fujita Y; Kusaka T
    J Biochem; 1980 Oct; 88(4):1051-8. PubMed ID: 7451405
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new inhibitor of mitochondrial fatty acid oxidation.
    Hashimoto T; Shindo Y; Souri M; Baldwin GS
    J Biochem; 1996 Jun; 119(6):1196-201. PubMed ID: 8827458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial β-oxidation of saturated fatty acids in humans.
    Adeva-Andany MM; Carneiro-Freire N; Seco-Filgueira M; Fernández-Fernández C; Mouriño-Bayolo D
    Mitochondrion; 2019 May; 46():73-90. PubMed ID: 29551309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequence analysis and structure prediction of enoyl-CoA hydratase from Avicennia marina: implication of various amino acid residues on substrate-enzyme interactions.
    Jabeen U; Salim A
    Phytochemistry; 2013 Oct; 94():36-44. PubMed ID: 23809632
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NADPH-dependent beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms.
    Smeland TE; Nada M; Cuebas D; Schulz H
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6673-7. PubMed ID: 1495956
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peroxisomal beta-oxidation and polyunsaturated fatty acids.
    Hiltunen JK; Filppula SA; Koivuranta KT; Siivari K; Qin YM; Häyrinen HM
    Ann N Y Acad Sci; 1996 Dec; 804():116-28. PubMed ID: 8993540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Induction of enzymes involved in fatty acid beta-oxidation in Pseudomonas fragi B-0771 cells grown in media supplemented with fatty acid.
    Sato S; Imamura S; Ozeki Y; Kawaguchi A
    J Biochem; 1992 Jan; 111(1):16-9. PubMed ID: 1607360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thia fatty acids, metabolism and metabolic effects.
    Skrede S; Sørensen HN; Larsen LN; Steineger HH; Høvik K; Spydevold OS; Horn R; Bremer J
    Biochim Biophys Acta; 1997 Jan; 1344(2):115-31. PubMed ID: 9030189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.