These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12504697)

  • 1. Neural networks to identify glaucomatous visual field progression.
    Lin A; Hoffman D; Gaasterland DE; Caprioli J
    Am J Ophthalmol; 2003 Jan; 135(1):49-54. PubMed ID: 12504697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of input data on the performance of a neural network in distinguishing normal and glaucomatous visual fields.
    Bengtsson B; Bizios D; Heijl A
    Invest Ophthalmol Vis Sci; 2005 Oct; 46(10):3730-6. PubMed ID: 16186356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trained artificial neural network for glaucoma diagnosis using visual field data: a comparison with conventional algorithms.
    Bizios D; Heijl A; Bengtsson B
    J Glaucoma; 2007 Jan; 16(1):20-8. PubMed ID: 17224745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of methods to predict visual field progression in glaucoma.
    Nouri-Mahdavi K; Hoffman D; Ralli M; Caprioli J
    Arch Ophthalmol; 2007 Sep; 125(9):1176-81. PubMed ID: 17846355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Advanced Glaucoma Intervention Study (AGIS): 14. Distinguishing progression of glaucoma from visual field fluctuations.
    Kim J; Dally LG; Ederer F; Gaasterland DE; VanVeldhuisen PC; Blackwell B; Sullivan EK; Prum B; Shafranov G; Beck A; Spaeth GL;
    Ophthalmology; 2004 Nov; 111(11):2109-16. PubMed ID: 15522379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study.
    Nouri-Mahdavi K; Hoffman D; Coleman AL; Liu G; Li G; Gaasterland D; Caprioli J;
    Ophthalmology; 2004 Sep; 111(9):1627-35. PubMed ID: 15350314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency doubling technology perimetry for detection of glaucomatous visual field loss.
    Cello KE; Nelson-Quigg JM; Johnson CA
    Am J Ophthalmol; 2000 Mar; 129(3):314-22. PubMed ID: 10704546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis.
    Wang M; Shen LQ; Pasquale LR; Petrakos P; Formica S; Boland MV; Wellik SR; De Moraes CG; Myers JS; Saeedi O; Wang H; Baniasadi N; Li D; Tichelaar J; Bex PJ; Elze T
    Invest Ophthalmol Vis Sci; 2019 Jan; 60(1):365-375. PubMed ID: 30682206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scoring systems for measuring progression of visual field loss in clinical trials of glaucoma treatment.
    Katz J
    Ophthalmology; 1999 Feb; 106(2):391-5. PubMed ID: 9951496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glaucoma diagnostics.
    Geimer SA
    Acta Ophthalmol; 2013 Feb; 91 Thesis 1():1-32. PubMed ID: 23384049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new index to monitor central visual field progression in glaucoma.
    de Moraes CG; Furlanetto RL; Ritch R; Liebmann JM
    Ophthalmology; 2014 Aug; 121(8):1531-8. PubMed ID: 24726202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical evaluation of the diagnostic accuracy of methods used to determine the progression of visual field defects in glaucoma.
    Mayama C; Araie M; Suzuki Y; Ishida K; Yamamoto T; Kitazawa Y; Shirakashi M; Abe H; Tsukamoto H; Mishima HK; Yoshimura K; Ohashi Y
    Ophthalmology; 2004 Nov; 111(11):2117-25. PubMed ID: 15522380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting visual field loss in ocular hypertensive patients using wavelet-fourier analysis of GDx scanning laser polarimetry.
    Essock EA; Gunvant P; Zheng Y; Garway-Heath DF; Kotecha A; Spratt A
    Optom Vis Sci; 2007 May; 84(5):380-7. PubMed ID: 17502818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural networks to identify glaucoma with structural and functional measurements.
    Brigatti L; Hoffman D; Caprioli J
    Am J Ophthalmol; 1996 May; 121(5):511-21. PubMed ID: 8610794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pointwise linear regression for evaluation of visual field outcomes and comparison with the advanced glaucoma intervention study methods.
    Nouri-Mahdavi K; Caprioli J; Coleman AL; Hoffman D; Gaasterland D
    Arch Ophthalmol; 2005 Feb; 123(2):193-9. PubMed ID: 15710815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of visual field progression criteria of 3 major glaucoma trials in early manifest glaucoma trial patients.
    Heijl A; Bengtsson B; Chauhan BC; Lieberman MF; Cunliffe I; Hyman L; Leske MC
    Ophthalmology; 2008 Sep; 115(9):1557-65. PubMed ID: 18378317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators.
    Am J Ophthalmol; 2000 Oct; 130(4):429-40. PubMed ID: 11024415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perimetric progression using the Visual Field Index and the Advanced Glaucoma Intervention Study score and its clinical correlations.
    Gros-Otero J; Castejón M; Paz-Moreno J; Mikropoulos D; Teus M
    J Optom; 2015; 8(4):232-8. PubMed ID: 25182851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagnostic performance of visual field test using subsets of the 24-2 test pattern for early glaucomatous field loss.
    Wang Y; Henson DB
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):756-61. PubMed ID: 23258149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning laser polarimetry using variable corneal compensation in the detection of glaucoma with localized visual field defects.
    Kook MS; Cho HS; Seong M; Choi J
    Ophthalmology; 2005 Nov; 112(11):1970-8. PubMed ID: 16185765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.