These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 12505315)

  • 1. Biological reactivity and biomarkers of the neutrophil oxidant, hypochlorous acid.
    Winterbourn CC
    Toxicology; 2002 Dec; 181-182():223-7. PubMed ID: 12505315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative reactivity of the myeloperoxidase-derived oxidants hypochlorous acid and hypothiocyanous acid with human coronary artery endothelial cells.
    Lloyd MM; Grima MA; Rayner BS; Hadfield KA; Davies MJ; Hawkins CL
    Free Radic Biol Med; 2013 Dec; 65():1352-1362. PubMed ID: 24120969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomarkers of myeloperoxidase-derived hypochlorous acid.
    Winterbourn CC; Kettle AJ
    Free Radic Biol Med; 2000 Sep; 29(5):403-9. PubMed ID: 11020661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol chlorohydrin synthesis by the myeloperoxidase-hydrogen peroxide-chloride system: potential markers for lipoproteins oxidatively damaged by phagocytes.
    Heinecke JW; Li W; Mueller DM; Bohrer A; Turk J
    Biochemistry; 1994 Aug; 33(33):10127-36. PubMed ID: 8060981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids.
    Pattison DI; Davies MJ; Hawkins CL
    Free Radic Res; 2012 Aug; 46(8):975-95. PubMed ID: 22348603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of proteins susceptible to thiol oxidation in endothelial cells exposed to hypochlorous acid and N-chloramines.
    Summers FA; Forsman Quigley A; Hawkins CL
    Biochem Biophys Res Commun; 2012 Aug; 425(2):157-61. PubMed ID: 22819842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of 3-chlorotyrosine by inflammatory oxidants: implications for the use of 3-chlorotyrosine as a bio-marker in vivo.
    Whiteman M; Spencer JP
    Biochem Biophys Res Commun; 2008 Jun; 371(1):50-3. PubMed ID: 18405660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorohydrin formation from unsaturated fatty acids reacted with hypochlorous acid.
    Winterbourn CC; van den Berg JJ; Roitman E; Kuypers FA
    Arch Biochem Biophys; 1992 Aug; 296(2):547-55. PubMed ID: 1321589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing.
    Winterbourn CC; Hampton MB; Livesey JH; Kettle AJ
    J Biol Chem; 2006 Dec; 281(52):39860-9. PubMed ID: 17074761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What are the plasma targets of the oxidant hypochlorous acid? A kinetic modeling approach.
    Pattison DI; Hawkins CL; Davies MJ
    Chem Res Toxicol; 2009 May; 22(5):807-17. PubMed ID: 19326902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genotoxic effects of neutrophils and hypochlorous acid.
    Güngör N; Knaapen AM; Munnia A; Peluso M; Haenen GR; Chiu RK; Godschalk RW; van Schooten FJ
    Mutagenesis; 2010 Mar; 25(2):149-54. PubMed ID: 19892774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The free amino acid tyrosine enhances the chlorinating activity of human myeloperoxidase.
    Vlasova II; Sokolov AV; Arnhold J
    J Inorg Biochem; 2012 Jan; 106(1):76-83. PubMed ID: 22112843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetaminophen (paracetamol) inhibits myeloperoxidase-catalyzed oxidant production and biological damage at therapeutically achievable concentrations.
    Koelsch M; Mallak R; Graham GG; Kajer T; Milligan MK; Nguyen LQ; Newsham DW; Keh JS; Kettle AJ; Scott KF; Ziegler JB; Pattison DI; Fu S; Hawkins CL; Rees MD; Davies MJ
    Biochem Pharmacol; 2010 Apr; 79(8):1156-64. PubMed ID: 19968966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiol oxidation and di-tyrosine formation in human plasma proteins induced by inflammatory concentrations of hypochlorous acid.
    Colombo G; Clerici M; Altomare A; Rusconi F; Giustarini D; Portinaro N; Garavaglia ML; Rossi R; Dalle-Donne I; Milzani A
    J Proteomics; 2017 Jan; 152():22-32. PubMed ID: 27777179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive Oxygen Species and Neutrophil Function.
    Winterbourn CC; Kettle AJ; Hampton MB
    Annu Rev Biochem; 2016 Jun; 85():765-92. PubMed ID: 27050287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myeloperoxidase-induced formation of chlorohydrins and lysophospholipids from unsaturated phosphatidylcholines.
    Panasenko OM; Spalteholz H; Schiller J; Arnhold J
    Free Radic Biol Med; 2003 Mar; 34(5):553-62. PubMed ID: 12614844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells.
    Carvalho LAC; Lopes JPPB; Kaihami GH; Silva RP; Bruni-Cardoso A; Baldini RL; Meotti FC
    Redox Biol; 2018 Jun; 16():179-188. PubMed ID: 29510342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation.
    Weiss SJ; Klein R; Slivka A; Wei M
    J Clin Invest; 1982 Sep; 70(3):598-607. PubMed ID: 6286728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of 2-cys peroxiredoxins in human endothelial cells by hydrogen peroxide, hypochlorous acid, and chloramines.
    Stacey MM; Vissers MC; Winterbourn CC
    Antioxid Redox Signal; 2012 Aug; 17(3):411-21. PubMed ID: 22229717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Living with a killer: the effects of hypochlorous acid on mammalian cells.
    Pullar JM; Vissers MC; Winterbourn CC
    IUBMB Life; 2000; 50(4-5):259-66. PubMed ID: 11327319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.