BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 12505316)

  • 1. Aldehyde-sequestering drugs: tools for studying protein damage by lipid peroxidation products.
    Burcham PC; Kaminskas LM; Fontaine FR; Petersen DR; Pyke SM
    Toxicology; 2002 Dec; 181-182():229-36. PubMed ID: 12505316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of hydrazinophthalazine drugs with the lipid peroxidation products acrolein and crotonaldehyde.
    Kaminskas LM; Pyke SM; Burcham PC
    Org Biomol Chem; 2004 Sep; 2(18):2578-84. PubMed ID: 15351821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity, Selectivity, and Reaction Mechanisms of Aminoguanidine, Hydralazine, Pyridoxamine, and Carnosine as Sequestering Agents of Reactive Carbonyl Species: A Comparative Study.
    Colzani M; De Maddis D; Casali G; Carini M; Vistoli G; Aldini G
    ChemMedChem; 2016 Aug; 11(16):1778-89. PubMed ID: 26891408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Could carnosine be a naturally-occurring scavenger for acrolein and other reactive aldehydes in the brain?
    Hipkiss AR
    Neurobiol Aging; 2002; 23(4):645-6. PubMed ID: 12009514
    [No Abstract]   [Full Text] [Related]  

  • 5. The antihypertensive hydralazine is an efficient scavenger of acrolein.
    Burcham PC; Kerr PG; Fontaine F
    Redox Rep; 2000; 5(1):47-9. PubMed ID: 10905545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carnosine protects cardiac myocytes against lipid peroxidation products.
    Zhao J; Posa DK; Kumar V; Hoetker D; Kumar A; Ganesan S; Riggs DW; Bhatnagar A; Wempe MF; Baba SP
    Amino Acids; 2019 Jan; 51(1):123-138. PubMed ID: 30449006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydralazine inhibits rapid acrolein-induced protein oligomerization: role of aldehyde scavenging and adduct trapping in cross-link blocking and cytoprotection.
    Burcham PC; Pyke SM
    Mol Pharmacol; 2006 Mar; 69(3):1056-65. PubMed ID: 16368895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological effect of protein modifications by lipid peroxidation products.
    Gęgotek A; Skrzydlewska E
    Chem Phys Lipids; 2019 Jul; 221():46-52. PubMed ID: 30922835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts.
    Yoval-Sánchez B; Rodríguez-Zavala JS
    Chem Res Toxicol; 2012 Mar; 25(3):722-9. PubMed ID: 22339434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation.
    Anderson MM; Hazen SL; Hsu FF; Heinecke JW
    J Clin Invest; 1997 Feb; 99(3):424-32. PubMed ID: 9022075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current status of acrolein as a lipid peroxidation product.
    Uchida K
    Trends Cardiovasc Med; 1999 Jul; 9(5):109-13. PubMed ID: 10639724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophilic aldehyde products of lipid peroxidation selectively adduct to heat shock protein 90 and arylsulfatase A in stallion spermatozoa.
    Hall SE; Aitken RJ; Nixon B; Smith ND; Gibb Z
    Biol Reprod; 2017 Jan; 96(1):107-121. PubMed ID: 28395341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary carnosine prevents early atherosclerotic lesion formation in apolipoprotein E-null mice.
    Barski OA; Xie Z; Baba SP; Sithu SD; Agarwal A; Cai J; Bhatnagar A; Srivastava S
    Arterioscler Thromb Vasc Biol; 2013 Jun; 33(6):1162-70. PubMed ID: 23559625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA damage caused by lipid peroxidation products.
    Łuczaj W; Skrzydlewska E
    Cell Mol Biol Lett; 2003; 8(2):391-413. PubMed ID: 12813574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of derivatized biogenic aldehydes by LC tandem mass spectrometry.
    Williams TI; Lovell MA; Lynn BC
    Anal Chem; 2005 May; 77(10):3383-9. PubMed ID: 15889933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes.
    Pérez JM; Arenas FA; Pradenas GA; Sandoval JM; Vásquez CC
    J Biol Chem; 2008 Mar; 283(12):7346-53. PubMed ID: 18211903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of acrolein from the ozone oxidation of unsaturated fatty acids.
    Medina-Navarro R; Mercado-Pichardo E; Hernández-Pérez O; Hicks JJ
    Hum Exp Toxicol; 1999 Nov; 18(11):677-82. PubMed ID: 10602392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer's disease.
    Calingasan NY; Uchida K; Gibson GE
    J Neurochem; 1999 Feb; 72(2):751-6. PubMed ID: 9930749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbonyl scavengers as pharmacotherapies in degenerative disease: Hydralazine repurposing and challenges in clinical translation.
    Burcham PC
    Biochem Pharmacol; 2018 Aug; 154():397-406. PubMed ID: 29883705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastin Modification by 4-Hydroxynonenal in Hairless Mice Exposed to UV-A. Role in Photoaging and Actinic Elastosis.
    Larroque-Cardoso P; Camaré C; Nadal-Wollbold F; Grazide MH; Pucelle M; Garoby-Salom S; Bogdanowicz P; Josse G; Schmitt AM; Uchida K; Zarkovic K; Salvayre R; Nègre-Salvayre A
    J Invest Dermatol; 2015 Jul; 135(7):1873-1881. PubMed ID: 25739050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.