BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12505320)

  • 21. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential.
    Meng J; Wang J; Lawrence G; Dolly JO
    J Cell Sci; 2007 Aug; 120(Pt 16):2864-74. PubMed ID: 17666428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tetanus and botulinal neurotoxins. Tools to understand exocytosis in neurons.
    Link E; Blasi J; Chapman ER; Edelmann L; Baumeister A; Binz T; Yamasaki S; Niemann H; Jahn R
    Adv Second Messenger Phosphoprotein Res; 1994; 29():47-58. PubMed ID: 7848727
    [No Abstract]   [Full Text] [Related]  

  • 23. Botulinum A and the light chain of tetanus toxins inhibit distinct stages of Mg.ATP-dependent catecholamine exocytosis from permeabilised chromaffin cells.
    Lawrence GW; Weller U; Dolly JO
    Eur J Biochem; 1994 Jun; 222(2):325-33. PubMed ID: 8020471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs.
    Tucker WC; Weber T; Chapman ER
    Science; 2004 Apr; 304(5669):435-8. PubMed ID: 15044754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular scaffold reorganization at the transmitter release site with vesicle exocytosis or botulinum toxin C1.
    Stanley EF; Reese TS; Wang GZ
    Eur J Neurosci; 2003 Oct; 18(8):2403-7. PubMed ID: 14622203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The 26-mer peptide released from SNAP-25 cleavage by botulinum neurotoxin E inhibits vesicle docking.
    Ferrer-Montiel AV; Gutiérrez LM; Apland JP; Canaves JM; Gil A; Viniegra S; Biser JA; Adler M; Montal M
    FEBS Lett; 1998 Sep; 435(1):84-8. PubMed ID: 9755864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SNAP-25 and syntaxin, but not synaptobrevin 2, cooperate in the regulated release of nerve growth factor.
    Blöchl A
    Neuroreport; 1998 Jun; 9(8):1701-5. PubMed ID: 9665586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional importance of synaptobrevin and SNAP-25 during exocytosis of histamine by rat gastric enterochromaffin-like cells.
    Höhne-Zell B; Galler A; Schepp W; Gratzl M; Prinz C
    Endocrinology; 1997 Dec; 138(12):5518-26. PubMed ID: 9389539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis.
    Sørensen JB; Matti U; Wei SH; Nehring RB; Voets T; Ashery U; Binz T; Neher E; Rettig J
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1627-32. PubMed ID: 11830673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Botulinum neurotoxin B inhibits insulin-stimulated glucose uptake into 3T3-L1 adipocytes and cleaves cellubrevin unlike type A toxin which failed to proteolyze the SNAP-23 present.
    Chen F; Foran P; Shone CC; Foster KA; Melling J; Dolly JO
    Biochemistry; 1997 May; 36(19):5719-28. PubMed ID: 9153412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SNARE proteins synaptobrevin, SNAP-25, and syntaxin are involved in rapid and slow endocytosis at synapses.
    Xu J; Luo F; Zhang Z; Xue L; Wu XS; Chiang HC; Shin W; Wu LG
    Cell Rep; 2013 May; 3(5):1414-21. PubMed ID: 23643538
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A late phase of exocytosis from synaptosomes induced by elevated [Ca2+]i is not blocked by Clostridial neurotoxins.
    Ashton AC; Dolly JO
    J Neurochem; 2000 May; 74(5):1979-88. PubMed ID: 10800941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphomimetic mutation of Ser-187 of SNAP-25 increases both syntaxin binding and highly Ca2+-sensitive exocytosis.
    Yang Y; Craig TJ; Chen X; Ciufo LF; Takahashi M; Morgan A; Gillis KD
    J Gen Physiol; 2007 Mar; 129(3):233-44. PubMed ID: 17325194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SNAP-25 regulation during adrenal gland development: comparison with differentiation markers and other SNAREs.
    Hepp R; Grant NJ; Aunis D; Langley K
    J Comp Neurol; 2000 Jun; 421(4):533-42. PubMed ID: 10842212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CaV2.1 (P/Q channel) interaction with synaptic proteins is essential for depolarization-evoked release.
    Cohen-Kutner M; Nachmanni D; Atlas D
    Channels (Austin); 2010; 4(4):266-77. PubMed ID: 20495360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for calcium-dependent vesicular transmitter release insensitive to tetanus toxin and botulinum toxin type F.
    Fassio A; Sala R; Bonanno G; Marchi M; Raiteri M
    Neuroscience; 1999 Mar; 90(3):893-902. PubMed ID: 10218789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis.
    Quetglas S; Iborra C; Sasakawa N; De Haro L; Kumakura K; Sato K; Leveque C; Seagar M
    EMBO J; 2002 Aug; 21(15):3970-9. PubMed ID: 12145198
    [TBL] [Abstract][Full Text] [Related]  

  • 38. IgA protease from Neisseria gonorrhoeae inhibits exocytosis in bovine chromaffin cells like tetanus toxin.
    Binscheck T; Bartels F; Bergel H; Bigalke H; Yamasaki S; Hayashi T; Niemann H; Pohlner J
    J Biol Chem; 1995 Jan; 270(4):1770-4. PubMed ID: 7829513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Small peptides patterned after the N-terminus domain of SNAP25 inhibit SNARE complex assembly and regulated exocytosis.
    Blanes-Mira C; Merino JM; Valera E; Fernández-Ballester G; Gutiérrez LM; Viniegra S; Pérez-Payá E; Ferrer-Montiel A
    J Neurochem; 2004 Jan; 88(1):124-35. PubMed ID: 14675156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distinct kinetic changes in neurotransmitter release after SNARE protein cleavage.
    Sakaba T; Stein A; Jahn R; Neher E
    Science; 2005 Jul; 309(5733):491-4. PubMed ID: 16020741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.