BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 12506082)

  • 1. Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes.
    Koopmans SA; Terwee T; Barkhof J; Haitjema HJ; Kooijman AC
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):250-7. PubMed ID: 12506082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relation between injected volume and optical parameters in refilled isolated porcine lenses.
    Koopmans SA; Terwee T; Haitjema HJ; Deuring H; Aarle S; Kooijman AC
    Ophthalmic Physiol Opt; 2004 Nov; 24(6):572-9. PubMed ID: 15491485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in lens stiffness due to capsular opacification in accommodative lens refilling.
    Nibourg LM; Sharma PK; van Kooten TG; Koopmans SA
    Exp Eye Res; 2015 May; 134():148-54. PubMed ID: 25704214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the behavior of natural and refilled porcine lenses in a robotic lens stretcher.
    Reilly MA; Hamilton PD; Perry G; Ravi N
    Exp Eye Res; 2009 Mar; 88(3):483-94. PubMed ID: 19041865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in spherical aberration after lens refilling with a silicone oil.
    Wong KH; Koopmans SA; Terwee T; Kooijman AC
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1261-7. PubMed ID: 17325171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presbyopia and the optical changes in the human crystalline lens with age.
    Glasser A; Campbell MC
    Vision Res; 1998 Jan; 38(2):209-29. PubMed ID: 9536350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accommodative lens refilling in rhesus monkeys.
    Koopmans SA; Terwee T; Glasser A; Wendt M; Vilupuru AS; van Kooten TG; Norrby S; Haitjema HJ; Kooijman AC
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):2976-84. PubMed ID: 16799042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the capsular shape in lens refilling.
    Nishi O; Nishi K; Mano C; Ichihara M; Honda T
    Arch Ophthalmol; 1997 Apr; 115(4):507-10. PubMed ID: 9109760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical analysis of the accommodative apparatus in primates.
    Ehrmann K; Ho A; Parel JM
    Clin Exp Optom; 2008 May; 91(3):302-12. PubMed ID: 18279413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplitudes of accommodation of primate lenses refilled with two types of inflatable endocapsular balloons.
    Nishi O; Nakai Y; Yamada Y; Mizumoto Y
    Arch Ophthalmol; 1993 Dec; 111(12):1677-84. PubMed ID: 8155039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the lens capsule on the mechanical accommodative response in a lens stretcher.
    Ziebarth NM; Borja D; Arrieta E; Aly M; Manns F; Dortonne I; Nankivil D; Jain R; Parel JM
    Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4490-6. PubMed ID: 18515568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optomechanical response of human and monkey lenses in a lens stretcher.
    Manns F; Parel JM; Denham D; Billotte C; Ziebarth N; Borja D; Fernandez V; Aly M; Arrieta E; Ho A; Holden B
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3260-8. PubMed ID: 17591897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lens refilling to restore accommodation.
    Nishi Y; Mireskandari K; Khaw P; Findl O
    J Cataract Refract Surg; 2009 Feb; 35(2):374-82. PubMed ID: 19185257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastic properties of human lens zonules as a function of age in presbyopes.
    Michael R; Mikielewicz M; Gordillo C; Montenegro GA; Pinilla Cortés L; Barraquer RI
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6109-14. PubMed ID: 22850416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental increase in accommodative potential after neodymium: yttrium-aluminum-garnet laser photodisruption of paired cadaver lenses.
    Krueger RR; Sun XK; Stroh J; Myers R
    Ophthalmology; 2001 Nov; 108(11):2122-9. PubMed ID: 11713090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accommodating intraocular lenses: a critical review of present and future concepts.
    Menapace R; Findl O; Kriechbaum K; Leydolt-Koeppl Ch
    Graefes Arch Clin Exp Ophthalmol; 2007 Apr; 245(4):473-89. PubMed ID: 16944188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation.
    Augusteyn RC; Mohamed A; Nankivil D; Veerendranath P; Arrieta E; Taneja M; Manns F; Ho A; Parel JM
    Vision Res; 2011 Jul; 51(14):1667-78. PubMed ID: 21658404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related response of human lenses to stretching forces.
    Pierscionek BK
    Exp Eye Res; 1995 Mar; 60(3):325-32. PubMed ID: 7789412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. fs-Laser induced elasticity changes to improve presbyopic lens accommodation.
    Ripken T; Oberheide U; Fromm M; Schumacher S; Gerten G; Lubatschowski H
    Graefes Arch Clin Exp Ophthalmol; 2008 Jun; 246(6):897-906. PubMed ID: 18030488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accommodative movements of the lens/capsule and the strand that extends between the posterior vitreous zonule insertion zone & the lens equator, in relation to the vitreous face and aging.
    Croft MA; Heatley G; McDonald JP; Katz A; Kaufman PL
    Ophthalmic Physiol Opt; 2016 Jan; 36(1):21-32. PubMed ID: 26769326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.