BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 12506366)

  • 1. Electron-transfer chemistry of the iron-molybdenum cofactor of nitrogenase: delocalized and localized reduced states of FeMoco which allow binding of carbon monoxide to iron and molybdenum.
    Pickett CJ; Vincent KA; Ibrahim SK; Gormal CA; Smith BE; Best SP
    Chemistry; 2003 Jan; 9(1):76-87. PubMed ID: 12506366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergic binding of carbon monoxide and cyanide to the FeMo cofactor of nitrogenase: relic chemistry of an ancient enzyme?
    Pickett CJ; Vincent KA; Ibrahim SK; Gormal CA; Smith BE; Fairhurst SA; Best SP
    Chemistry; 2004 Oct; 10(19):4770-6. PubMed ID: 15372690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] clusters of the molybdenum-iron protein.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1996 Dec; 35(51):16770-6. PubMed ID: 8988014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into structure-function relationships in nitrogenase: A 1.6 A resolution X-ray crystallographic study of Klebsiella pneumoniae MoFe-protein.
    Mayer SM; Lawson DM; Gormal CA; Roe SM; Smith BE
    J Mol Biol; 1999 Oct; 292(4):871-91. PubMed ID: 10525412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stopped-flow Fourier transform infrared spectroscopy allows continuous monitoring of azide reduction, carbon monoxide inhibition, and ATP hydrolysis by nitrogenase.
    Tolland JD; Thorneley RN
    Biochemistry; 2005 Jul; 44(27):9520-7. PubMed ID: 15996106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An atomic level model for the interactions of molybdenum nitrogenase with carbon monoxide, acetylene, and ethylene.
    Durrant MC
    Biochemistry; 2004 May; 43(20):6030-42. PubMed ID: 15147187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for coupled electron and proton transfer in the [8Fe-7S] cluster of nitrogenase.
    Lanzilotta WN; Christiansen J; Dean DR; Seefeldt LC
    Biochemistry; 1998 Aug; 37(32):11376-84. PubMed ID: 9698385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FeMo cofactor of nitrogenase: energetics and local interactions in the protein environment.
    Lovell T; Li J; Case DA; Noodleman L
    J Biol Inorg Chem; 2002 Sep; 7(7-8):735-49. PubMed ID: 12203010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trapping H- bound to the nitrogenase FeMo-cofactor active site during H2 evolution: characterization by ENDOR spectroscopy.
    Igarashi RY; Laryukhin M; Dos Santos PC; Lee HI; Dean DR; Seefeldt LC; Hoffman BM
    J Am Chem Soc; 2005 May; 127(17):6231-41. PubMed ID: 15853328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus.
    Siemann S; Schneider K; Oley M; Müller A
    Biochemistry; 2003 Apr; 42(13):3846-57. PubMed ID: 12667075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of CO binding and release from Mo-nitrogenase during catalytic turnover.
    Cameron LM; Hales BJ
    Biochemistry; 1998 Jun; 37(26):9449-56. PubMed ID: 9649328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron inventory, kinetic assignment (E(n)), structure, and bonding of nitrogenase turnover intermediates with C2H2 and CO.
    Lee HI; Sørlie M; Christiansen J; Yang TC; Shao J; Dean DR; Hales BJ; Hoffman BM
    J Am Chem Soc; 2005 Nov; 127(45):15880-90. PubMed ID: 16277531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Monoxide Binding to the Iron-Molybdenum Cofactor of Nitrogenase: a Detailed Quantum Mechanics/Molecular Mechanics Investigation.
    Spiller N; Bjornsson R; DeBeer S; Neese F
    Inorg Chem; 2021 Dec; 60(23):18031-18047. PubMed ID: 34767349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox dependent interactions of the metal sites in carbon monoxide-bound cytochrome c oxidase monitored by infrared and UV/visible spectroelectrochemical methods.
    Dodson ED; Zhao XJ; Caughey WS; Elliott CM
    Biochemistry; 1996 Jan; 35(2):444-52. PubMed ID: 8555214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of a substrate binding site on the FeMo-cofactor in nitrogenase: trapping propargyl alcohol with an alpha-70-substituted MoFe protein.
    Benton PM; Laryukhin M; Mayer SM; Hoffman BM; Dean DR; Seefeldt LC
    Biochemistry; 2003 Aug; 42(30):9102-9. PubMed ID: 12885243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for multiple substrate-reduction sites and distinct inhibitor-binding sites from an altered Azotobacter vinelandii nitrogenase MoFe protein.
    Shen J; Dean DR; Newton WE
    Biochemistry; 1997 Apr; 36(16):4884-94. PubMed ID: 9125509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ENDOR characterization of a synthetic diiron hydrazido complex as a model for nitrogenase intermediates.
    Lees NS; McNaughton RL; Gregory WV; Holland PL; Hoffman BM
    J Am Chem Soc; 2008 Jan; 130(2):546-55. PubMed ID: 18092774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculated vibrational frequencies for FeMo-co, the active site of nitrogenase, bearing hydrogen atoms and carbon monoxide.
    Dance I
    Dalton Trans; 2011 Jun; 40(24):6480-9. PubMed ID: 21584340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding sites of nitrogenase: kinetic and theoretical studies of cyanide binding to extracted FeMo-cofactor derivatives.
    Cui Z; Dunford AJ; Durrant MC; Henderson RA; Smith BE
    Inorg Chem; 2003 Oct; 42(20):6252-64. PubMed ID: 14514300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.