These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12507313)

  • 1. Computerised visualisation from images of blood flow through frog mesenteric microvessels with multiple complexities.
    Manjunatha M; Singh M
    Med Biol Eng Comput; 2002 Nov; 40(6):634-40. PubMed ID: 12507313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital blood flow analysis from microscopic images of mesenteric microvessel with multiple branching.
    Manjunatha M; Singh M
    Clin Hemorheol Microcirc; 2002; 27(2):91-106. PubMed ID: 12237479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computerised multiparametric analysis from images of blood flow through frog mesenteric arterial bifurcation.
    Umrani J; Prakash B; Singh M
    Med Biol Eng Comput; 1997 Jul; 35(4):373-80. PubMed ID: 9327615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of pulsatile blood flow cycle in frog microvessels by image velocimetry.
    Singh SS; Singh M
    Med Biol Eng Comput; 2002 May; 40(3):269-72. PubMed ID: 12195971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of red cell velocity in microvessels using particle image velocimetry (PIV).
    Nakano A; Sugii Y; Minamiyama M; Niimi H
    Clin Hemorheol Microcirc; 2003; 29(3-4):445-55. PubMed ID: 14724373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Establishment of a system for measuring blood flow velocity of rat microvessel using dark background fluorescent image analysis method].
    Wu X; Chen H; Yan W; Zheng X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Oct; 22(5):1063-6. PubMed ID: 16294755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: cell-free layer and flow resistance.
    Tateishi N; Suzuki Y; Soutani M; Maeda N
    J Biomech; 1994 Sep; 27(9):1119-25. PubMed ID: 7929461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between liposomes and RBC in microvessels in vivo.
    Jeong JH; Sugii Y; Minamiyama M; Takeuchi H; Okamoto K
    Microvasc Res; 2007 Jan; 73(1):39-47. PubMed ID: 16844147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic extraction and measurement of leukocyte motion in microvessels using spatiotemporal image analysis.
    Sato Y; Chen J; Zoroofi RA; Harada N; Tamura S; Shiga T
    IEEE Trans Biomed Eng; 1997 Apr; 44(4):225-36. PubMed ID: 9125805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods.
    Huang TC; Lin WC; Wu CC; Zhang G; Lin KP
    Microvasc Res; 2010 Dec; 80(3):477-83. PubMed ID: 20659483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimum kinetic energy dissipation to maintain blood flow in glass capillaries: an analysis based on flow field determination by axial tomographic and image velocimetry techniques.
    Prakash B; Singh M
    J Biomech; 1995 Jun; 28(6):649-59. PubMed ID: 7601864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Changes of blood flow structure in precapillary microvessels during significant slow-down of flow].
    Lominadze DG; Mchedlishvili GI
    Patol Fiziol Eksp Ter; 1991; (1):36-7. PubMed ID: 2057231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Image analysis of the microvascular permeability to various molecular weight of flucrescein in rat mesentery].
    Hu J; Song X; Li X; Tian N
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 1997 Nov; 13(4):352-5. PubMed ID: 10322970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Velocity profiles in the microvessels dependent on the velocity and concentration of erythrocytes].
    Mamisashvili VA; Baratashvili IK; Lominadze DG
    Fiziol Zh SSSR Im I M Sechenova; 1982 Dec; 68(12):1673-9. PubMed ID: 7166190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow pulsation and network structure in mesenteric microvasculature of rats.
    Seki J
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H811-21. PubMed ID: 8141382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fluid shear stress distribution on the membrane of leukocytes in the microcirculation.
    Sugihara-Seki M; Schmid-Schönbein GW
    J Biomech Eng; 2003 Oct; 125(5):628-38. PubMed ID: 14618922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood flow analysis in mesenteric microvascular network by image velocimetry and axial tomography.
    Manjunatha M; Singh SS; Singh M
    Microvasc Res; 2003 Jan; 65(1):49-55. PubMed ID: 12535872
    [No Abstract]   [Full Text] [Related]  

  • 19. Red blood cell motion and deformation in a curved microvessel.
    Ye T; Phan-Thien N; Lim CT; Li Y
    J Biomech; 2017 Dec; 65():12-22. PubMed ID: 29102268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-free layer and wall shear stress variation in microvessels.
    Yin X; Zhang J
    Biorheology; 2012; 49(4):261-70. PubMed ID: 22836080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.