These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 12507319)

  • 1. Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue.
    Forrester KR; Stewart C; Tulip J; Leonard C; Bray RC
    Med Biol Eng Comput; 2002 Nov; 40(6):687-97. PubMed ID: 12507319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo comparison of scanning technique and wavelength in laser Doppler perfusion imaging: measurement in knee ligaments of adult rabbits.
    Forrester K; Doschak M; Bray R
    Med Biol Eng Comput; 1997 Nov; 35(6):581-6. PubMed ID: 9538532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging.
    Stewart CJ; Frank R; Forrester KR; Tulip J; Lindsay R; Bray RC
    Burns; 2005 Sep; 31(6):744-52. PubMed ID: 16129229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A laser speckle imaging technique for measuring tissue perfusion.
    Forrester KR; Tulip J; Leonard C; Stewart C; Bray RC
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2074-84. PubMed ID: 15536909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of laser Doppler imaging to measure blood flow in knee ligaments of adult rabbits.
    Bray R; Forrester K; McDougall JJ; Damji A; Ferrell WR
    Med Biol Eng Comput; 1996 May; 34(3):227-31. PubMed ID: 8762830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microvascular blood flow monitoring with laser speckle contrast imaging using the generalized differences algorithm.
    Humeau-Heurtier A; Mahé G; Abraham P
    Microvasc Res; 2015 Mar; 98():54-61. PubMed ID: 25576743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser Doppler perfusion imaging of synovial tissues using red and near infra-red lasers.
    Lockhart JC; Ferrell WR; Angerson WJ
    Int J Microcirc Clin Exp; 1997; 17(3):130-7. PubMed ID: 9272463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial heterogeneity in normal skin perfusion recorded with laser Doppler imaging and flowmetry.
    Wårdell K; Braverman IM; Silverman DG; Nilsson GE
    Microvasc Res; 1994 Jul; 48(1):26-38. PubMed ID: 7990721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of laser speckle contrast imaging with laser Doppler perfusion imaging for tissue perfusion measurement.
    Guven G; Dijkstra A; Kuijper TM; Trommel N; van Baar ME; Topeli A; Ince C; van der Vlies CH
    Microcirculation; 2023 Jan; 30(1):e12795. PubMed ID: 36524297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between the blood perfusion values determined by laser speckle imaging and laser Doppler imaging in normal skin and port wine stains.
    Chen D; Ren J; Wang Y; Zhao H; Li B; Gu Y
    Photodiagnosis Photodyn Ther; 2016 Mar; 13():1-9. PubMed ID: 26592337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser speckle contrast imaging, the future DBF imaging technique for TRP target engagement biomarker assays.
    Bamps D; Macours L; Buntinx L; de Hoon J
    Microvasc Res; 2020 May; 129():103965. PubMed ID: 31812705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative quantitative analysis of ultraviolet B-induced skin blood flow change using laser Doppler perfusion imaging technique.
    Youn JI; Park SB; Park BS; Han WS
    Photodermatol Photoimmunol Photomed; 2000 Aug; 16(4):167-71. PubMed ID: 11019941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of laser Doppler perfusion imaging in vitro and in vivo.
    Kernick DP; Shore AC
    Physiol Meas; 2000 May; 21(2):333-40. PubMed ID: 10847199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vessel packaging effect in laser speckle contrast imaging and laser Doppler imaging.
    Fredriksson I; Larsson M
    J Biomed Opt; 2017 Oct; 22(10):1-7. PubMed ID: 29019179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between laser speckle contrast imaging and laser Doppler imaging to assess skin blood flow in humans.
    Millet C; Roustit M; Blaise S; Cracowski JL
    Microvasc Res; 2011 Sep; 82(2):147-51. PubMed ID: 21745482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endoscopic laser imaging of tissue perfusion: new instrumentation and technique.
    Forrester KR; Stewart C; Leonard C; Tulip J; Bray RC
    Lasers Surg Med; 2003; 33(3):151-7. PubMed ID: 12949943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration.
    O'Doherty J; McNamara P; Clancy NT; Enfield JG; Leahy MJ
    J Biomed Opt; 2009; 14(3):034025. PubMed ID: 19566318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-Doppler perfusion imaging of microvascular blood flow in rabbit tenuissimus muscle.
    Lindén M; Sirsjö A; Lindbom L; Nilsson G; Gidlöf A
    Am J Physiol; 1995 Oct; 269(4 Pt 2):H1496-500. PubMed ID: 7485586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning in multiexposure laser speckle contrast imaging can replace conventional laser Doppler flowmetry.
    Fredriksson I; Hultman M; Strömberg T; Larsson M
    J Biomed Opt; 2019 Jan; 24(1):1-11. PubMed ID: 30675771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A preliminary assessment of laser Doppler perfusion imaging in human skin using the tuberculin reaction as a model.
    Harrison DK; Abbot NC; Beck JS; McCollum PT
    Physiol Meas; 1993 Aug; 14(3):241-52. PubMed ID: 8401263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.