BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12507324)

  • 1. Retinal ganglion cells projecting to the optic tectum and visual thalamus of lizards.
    Martinez-Marcos A; Lanuza E; Martinez-Garcia F
    Vis Neurosci; 2002; 19(5):575-81. PubMed ID: 12507324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascending projections from the optic tectum in the lizard Podarcis hispanica.
    Martínez-Marcos A; Font C; Lanuza E; Martínez-García F
    Vis Neurosci; 1998; 15(3):459-75. PubMed ID: 9685199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesencephalic and diencephalic afferent connections to the thalamic nucleus rotundus in the lizard, Psammodromus algirus.
    Dávila JC; Andreu MJ; Real MA; Puelles L; Guirado S
    Eur J Neurosci; 2002 Jul; 16(2):267-82. PubMed ID: 12169109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Afferents to the red nucleus in the lizard Podarcis hispanica: putative pathways for visuomotor integration.
    Martínez-Marcos A; Lanuza E; Font C; Martínez-García F
    J Comp Neurol; 1999 Aug; 411(1):35-55. PubMed ID: 10404106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal projection to the pretectal nucleus lentiformis mesencephali in pigeons (Columba livia).
    Wylie DR; Kolominsky J; Graham DJ; Lisney TJ; Gutierrez-Ibanez C
    J Comp Neurol; 2014 Dec; 522(17):3928-42. PubMed ID: 25044056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Displaced retinal ganglion cells project to the accessory optic system in the chameleon ( Chamaeleo calyptratus).
    Bellintani-Guardia B; Ott M
    Exp Brain Res; 2002 Jul; 145(1):56-63. PubMed ID: 12070745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi). IV. Bilateral projections and the binocular visual field.
    Collin SP; Northcutt RG
    Brain Behav Evol; 1995; 45(1):34-53. PubMed ID: 7866770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conduction velocity groups in the retino-tectal and retino-thalamic visual pathways of the pigeon (Columbia livia).
    Mpodozis J; Letelier JC; Concha ML; Maturana H
    Int J Neurosci; 1995 Mar; 81(1-2):123-36. PubMed ID: 7775067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural evidence of the formation of synapses by retinal ganglion cell axons in two nonstandard targets.
    Cantore WA; Scalia F
    J Comp Neurol; 1987 Jul; 261(1):137-47. PubMed ID: 3497955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial resolution of an eye containing a grouped retina: ganglion cell morphology and tectal physiology in the weakly electric fish Gnathonemus petersii.
    Pusch R; Wagner HJ; von der Emde G; Engelmann J
    J Comp Neurol; 2013 Dec; 521(17):4075-93. PubMed ID: 23817965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tectal fiber connections in a non-teleost actinopterygian fish, the sturgeon Acipenser.
    Yamamoto N; Yoshimoto M; Albert JS; Sawai N; Ito H
    Brain Behav Evol; 1999; 53(3):142-55. PubMed ID: 10085480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projections of single retinal ganglion cells to the visual centers: an intracellular staining study in a plethodontid salamander.
    Wiggers W
    Vis Neurosci; 1999; 16(3):435-47. PubMed ID: 10349965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural organization of parallel information processing within the tectofugal visual system of the pigeon.
    Hellmann B; Güntürkün O
    J Comp Neurol; 2001 Jan; 429(1):94-112. PubMed ID: 11086292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal ganglion cell death induced by unilateral tectal ablation in Xenopus.
    Straznicky C; McCart R; Tóth P
    Vis Neurosci; 1989; 2(4):339-47. PubMed ID: 2487657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two distinct populations of tectal neurons have unique connections within the retinotectorotundal pathway of the pigeon (Columba livia).
    Karten HJ; Cox K; Mpodozis J
    J Comp Neurol; 1997 Oct; 387(3):449-65. PubMed ID: 9335427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The distribution of neurons projecting from the retina and visual cortex to the thalamus and tectum opticum of the barn owl, Tyto alba, and the burrowing owl, Speotyto cunicularia.
    Bravo H; Pettigrew JD
    J Comp Neurol; 1981 Jul; 199(3):419-41. PubMed ID: 7263955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendritic morphologies of retinal ganglion cells projecting to the nucleus of the optic tract in the rabbit.
    Pu ML; Amthor FR
    J Comp Neurol; 1990 Dec; 302(3):657-74. PubMed ID: 1702123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal projections in the lizard Podarcis hispanica.
    de la Calle A; Davila JC; Guirado S; Marin Giron F
    J Hirnforsch; 1986; 27(6):707-13. PubMed ID: 3571966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Further study of the outward displacement of retinal ganglion cells during optic nerve regeneration, with a note on the normal cells of Dogiel in the adult frog.
    Singman EL; Scalia F
    J Comp Neurol; 1990 Nov; 301(1):80-92. PubMed ID: 2077052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of retinal ganglion cell axon arbor size by target availability: mechanisms of compression and expansion of the retinotectal projection.
    Xiong M; Pallas SL; Lim S; Finlay BL
    J Comp Neurol; 1994 Jun; 344(4):581-97. PubMed ID: 7929893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.