BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 12507327)

  • 1. Experimental retinal detachment in the cone-dominant ground squirrel retina: morphology and basic immunocytochemistry.
    Linberg KA; Sakai T; Lewis GP; Fisher SK
    Vis Neurosci; 2002; 19(5):603-19. PubMed ID: 12507327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ability of hyperoxia to limit the effects of experimental detachment in cone-dominated retina.
    Sakai T; Lewis GP; Linberg KA; Fisher SK
    Invest Ophthalmol Vis Sci; 2001 Dec; 42(13):3264-73. PubMed ID: 11726632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cone photoreceptor recovery after experimental detachment and reattachment: an immunocytochemical, morphological, and electrophysiological study.
    Sakai T; Calderone JB; Lewis GP; Linberg KA; Fisher SK; Jacobs GH
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):416-25. PubMed ID: 12506104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glial remodeling and neural plasticity in human retinal detachment with proliferative vitreoretinopathy.
    Sethi CS; Lewis GP; Fisher SK; Leitner WP; Mann DL; Luthert PJ; Charteris DG
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):329-42. PubMed ID: 15623793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Müller cell outgrowth after retinal detachment: association with cone photoreceptors.
    Lewis GP; Fisher SK
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1542-5. PubMed ID: 10798674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological characterization of the retinal degeneration in three strains of mice carrying the rd-3 mutation.
    Linberg KA; Fariss RN; Heckenlively JR; Farber DB; Fisher SK
    Vis Neurosci; 2005; 22(6):721-34. PubMed ID: 16469183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ability of rapid retinal reattachment to stop or reverse the cellular and molecular events initiated by detachment.
    Lewis GP; Charteris DG; Sethi CS; Leitner WP; Linberg KA; Fisher SK
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2412-20. PubMed ID: 12091445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal and post-trauma remodeling in cone-dominant ground squirrel retina.
    Merriman DK; Sajdak BS; Li W; Jones BW
    Exp Eye Res; 2016 Sep; 150():90-105. PubMed ID: 26808487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurite outgrowth from bipolar and horizontal cells after experimental retinal detachment.
    Lewis GP; Linberg KA; Fisher SK
    Invest Ophthalmol Vis Sci; 1998 Feb; 39(2):424-34. PubMed ID: 9478003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the neurotrophin brain-derived neurotrophic factor in an experimental model of retinal detachment.
    Lewis GP; Linberg KA; Geller SF; Guérin CJ; Fisher SK
    Invest Ophthalmol Vis Sci; 1999 Jun; 40(7):1530-44. PubMed ID: 10359336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The efficacy of delayed oxygen therapy in the treatment of experimental retinal detachment.
    Lewis GP; Talaga KC; Linberg KA; Avery RL; Fisher SK
    Am J Ophthalmol; 2004 Jun; 137(6):1085-95. PubMed ID: 15183794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormal reactivity of muller cells after retinal detachment in mice deficient in GFAP and vimentin.
    Verardo MR; Lewis GP; Takeda M; Linberg KA; Byun J; Luna G; Wilhelmsson U; Pekny M; Chen DF; Fisher SK
    Invest Ophthalmol Vis Sci; 2008 Aug; 49(8):3659-65. PubMed ID: 18469190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential expression of cone opsin mRNA levels following experimental retinal detachment and reattachment.
    Rex TS; Lewis GP; Geller SF; Fisher SK
    Mol Vis; 2002 Apr; 8():114-8. PubMed ID: 11979236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microglial cell activation following retinal detachment: a comparison between species.
    Lewis GP; Sethi CS; Carter KM; Charteris DG; Fisher SK
    Mol Vis; 2005 Jul; 11():491-500. PubMed ID: 16052164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunocytochemical evidence that rod-connected horizontal cell axon terminals remodel in response to experimental retinal detachment in the cat.
    Linberg KA; Lewis GP; Matsumoto B; Fisher SK
    Mol Vis; 2006 Dec; 12():1674-86. PubMed ID: 17213796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fate of Müller's glia following experimental retinal detachment: nuclear migration, cell division, and subretinal glial scar formation.
    Lewis GP; Chapin EA; Luna G; Linberg KA; Fisher SK
    Mol Vis; 2010 Jul; 16():1361-72. PubMed ID: 20664798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opsin distribution and protein incorporation in photoreceptors after experimental retinal detachment.
    Lewis GP; Erickson PA; Anderson DH; Fisher SK
    Exp Eye Res; 1991 Nov; 53(5):629-40. PubMed ID: 1835933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drusen-associated degeneration in the retina.
    Johnson PT; Lewis GP; Talaga KC; Brown MN; Kappel PJ; Fisher SK; Anderson DH; Johnson LV
    Invest Ophthalmol Vis Sci; 2003 Oct; 44(10):4481-8. PubMed ID: 14507896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the organization and expression of cytoskeletal proteins during retinal degeneration induced by retinal detachment.
    Lewis GP; Matsumoto B; Fisher SK
    Invest Ophthalmol Vis Sci; 1995 Nov; 36(12):2404-16. PubMed ID: 7591630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An animal model for studying cone function in retinal detachment.
    Jacobs GH; Calderone JB; Sakai T; Lewis GP; Fisher SK
    Doc Ophthalmol; 2002 Jan; 104(1):119-32. PubMed ID: 11949805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.