BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 12507472)

  • 1. Lysyl-tRNA synthetase from Bacillus stearothermophilus: the Trp314 residue is shielded in a non-polar environment and is responsible for the fluorescence changes observed in the amino acid activation reaction.
    Takita T; Nakagoshi M; Inouye K; Tonomura B
    J Mol Biol; 2003 Jan; 325(4):677-95. PubMed ID: 12507472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate-induced conformational changes of the truncated catalytic domain of Geobacillus stearothermophilus lysyl-tRNA synthetase as examined by fluorescence.
    Saruwatari Y; Wada T; Takita T; Inouye K
    Biochim Biophys Acta; 2008 Nov; 1784(11):1633-40. PubMed ID: 18675944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysyl-tRNA synthetase from Bacillus stearothermophilus. Purification, and fluorometric and kinetic analysis of the binding of substrates, L-lysine and ATP.
    Takita T; Ohkubo Y; Shima H; Muto T; Shimizu N; Sukata T; Ito H; Saito Y; Inouye K; Hiromi K; Tonomura B
    J Biochem; 1996 Apr; 119(4):680-9. PubMed ID: 8743569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysyl-tRNA synthetase from Bacillus stearothermophilus. Stopped-flow kinetic analysis of enzyme.lysyladenylate formation.
    Takita T; Akita E; Inouye K; Tonomura B
    J Biochem; 1998 Jul; 124(1):45-50. PubMed ID: 9644244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active site of lysyl-tRNA synthetase: structural studies of the adenylation reaction.
    Desogus G; Todone F; Brick P; Onesti S
    Biochemistry; 2000 Jul; 39(29):8418-25. PubMed ID: 10913247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence based structural analysis of tryptophan analogue-AMP formation in single tryptophan mutants of Bacillus stearothermophilus tryptophanyl-tRNA synthetase.
    Acchione M; Guillemette JG; Twine SM; Hogue CW; Rajendran B; Szabo AG
    Biochemistry; 2003 Dec; 42(50):14994-5002. PubMed ID: 14674776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysyl-tRNA synthetase from Bacillus stearothermophilus. Formation and isolation of an enzyme-lysyladenylate complex and its analogue.
    Takita T; Hashimoto S; Ohkubo Y; Muto T; Shimizu N; Sukata T; Inouye K; Hiromi K; Tonomura B
    J Biochem; 1997 Feb; 121(2):244-50. PubMed ID: 9089397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition state stabilization by the N-terminal anticodon-binding domain of lysyl-tRNA synthetase.
    Takita T; Inouye K
    J Biol Chem; 2002 Aug; 277(32):29275-82. PubMed ID: 12019264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli.
    Onesti S; Miller AD; Brick P
    Structure; 1995 Feb; 3(2):163-76. PubMed ID: 7735833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two crystal structures of lysyl-tRNA synthetase from Bacillus stearothermophilus in complex with lysyladenylate-like compounds: insights into the irreversible formation of the enzyme-bound adenylate of L-lysine hydroxamate.
    Sakurama H; Takita T; Mikami B; Itoh T; Yasukawa K; Inouye K
    J Biochem; 2009 May; 145(5):555-63. PubMed ID: 19174549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A concerted tryptophanyl-adenylate-dependent conformational change in Bacillus subtilis tryptophanyl-tRNA synthetase revealed by the fluorescence of Trp92.
    Hogue CW; DoubliƩ S; Xue H; Wong JT; Carter CW; Szabo AG
    J Mol Biol; 1996 Jul; 260(3):446-66. PubMed ID: 8757806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single substitution in the motif 1 of Escherichia coli lysyl-tRNA synthetase induces cooperativity toward amino acid binding.
    Commans S; Blanquet S; Plateau P
    Biochemistry; 1995 Jun; 34(25):8180-9. PubMed ID: 7794932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple catalytic activities of Escherichia coli lysyl-tRNA synthetase (LysU) are dissected by site-directed mutagenesis.
    Chen X; Boonyalai N; Lau C; Thipayang S; Xu Y; Wright M; Miller AD
    FEBS J; 2013 Jan; 280(1):102-14. PubMed ID: 23121660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural studies of lysyl-tRNA synthetase: conformational changes induced by substrate binding.
    Onesti S; Desogus G; Brevet A; Chen J; Plateau P; Blanquet S; Brick P
    Biochemistry; 2000 Oct; 39(42):12853-61. PubMed ID: 11041850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysyl-tRNA synthetase of Bacillus stearothermophilus molecular cloning and expression of the gene.
    Takita T; Shimizu N; Sukata T; Hashimoto S; Akita E; Yokota T; Esaki N; Soda K; Inouye K; Tonomura B
    Biosci Biotechnol Biochem; 2000 Feb; 64(2):432-7. PubMed ID: 10737207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimers generated from tetrameric phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus are inactive but exhibit cooperativity in NAD binding.
    Roitel O; Sergienko E; Branlant G
    Biochemistry; 1999 Dec; 38(49):16084-91. PubMed ID: 10587431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-induced covalent modification of methionyl-tRNA synthetase from Bacillus stearothermophilus by methionyl-adenylate: identification of the labeled amino acid residues by matrix-assisted laser desorption-ionization mass spectrometry.
    Hountondji C; Beauvallet C; Pernollet JC; Blanquet S
    J Protein Chem; 2000 Oct; 19(7):563-8. PubMed ID: 11233169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination of cognate and noncognate substrates at the active site of class II lysyl-tRNA synthetase.
    Ataide SF; Ibba M
    Biochemistry; 2004 Sep; 43(37):11836-41. PubMed ID: 15362869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional asymmetry in the lysyl-tRNA synthetase explored by molecular dynamics, free energy calculations and experiment.
    Hughes SJ; Tanner JA; Hindley AD; Miller AD; Gould IR
    BMC Struct Biol; 2003 Jun; 3():5. PubMed ID: 12787471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrimination of cognate and noncognate substrates at the active site of class I lysyl-tRNA synthetase.
    Wang S; Praetorius-Ibba M; Ataide SF; Roy H; Ibba M
    Biochemistry; 2006 Mar; 45(11):3646-52. PubMed ID: 16533047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.