These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 12507760)

  • 1. Ratiometric fluorescence measurements of membrane potential generated by yeast plasma membrane H(+)-ATPase reconstituted into vesicles.
    Holoubek A; Vecer J; Opekarová M; Sigler K
    Biochim Biophys Acta; 2003 Jan; 1609(1):71-9. PubMed ID: 12507760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of the proton electrochemical gradient in reconstituted vesicles: quantitative measurements of both transmembrane potential and intravesicular pH by ratiometric fluorescent probes.
    Holoubek A; Vecer J; Sigler K
    J Fluoresc; 2007 Mar; 17(2):201-13. PubMed ID: 17279336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrogenic H+ translocation by the plasma membrane ATPase of Neurospora. Studies on plasma membrane vesicles and reconstituted enzyme.
    Perlin DS; Kasamo K; Brooker RJ; Slayman CW
    J Biol Chem; 1984 Jun; 259(12):7884-92. PubMed ID: 6234306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of membrane potential deltapsi in reconstituted plasma membrane vesicles using a numerical model of oxonol VI distribution.
    Portele A; Lenz J; Höfer M
    J Bioenerg Biomembr; 1997 Dec; 29(6):603-9. PubMed ID: 9559861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of membrane voltage on the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae.
    Seto-Young D; Perlin DS
    J Biol Chem; 1991 Jan; 266(3):1383-9. PubMed ID: 1824841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a selective and electroneutral K+/H(+)-exchange in Saccharomyces cerevisiae using plasma membrane vesicles.
    Camarasa C; Prieto S; Ros R; Salmon JM; Barre P
    Yeast; 1996 Oct; 12(13):1301-13. PubMed ID: 8923735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical potential and ion transport in vesicles of yeast plasma membrane.
    Calahorra M; Ramírez J; Clemente SM; Peña A
    Biochim Biophys Acta; 1987 May; 899(2):229-38. PubMed ID: 2883994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors and processes involved in membrane potential build-up in yeast: diS-C3(3) assay.
    Gásková D; Brodská B; Holoubek A; Sigler K
    Int J Biochem Cell Biol; 1999 May; 31(5):575-84. PubMed ID: 10399318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Active electrogenic transport H+ in plasma membrane vesicles of cow parsnip phloem cells].
    Kalinin VA; Opritov VA; Shvets IM
    Biofizika; 1982; 27(1):58-61. PubMed ID: 6461361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion-dependent generation of the electrochemical proton gradient delta muH+ in reconstituted plasma membrane vesicles from the yeast Metschnikowia reukaufii.
    Gläser HU; Höfer M
    Biochim Biophys Acta; 1987 Dec; 905(2):287-94. PubMed ID: 2825781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stopped-flow kinetic study of the interaction of potential-sensitive oxonol dyes with lipid vesicles.
    Clarke RJ; Apell HJ
    Biophys Chem; 1989 Nov; 34(3):225-37. PubMed ID: 2611347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxonol VI as an optical indicator for membrane potentials in lipid vesicles.
    Apell HJ; Bersch B
    Biochim Biophys Acta; 1987 Oct; 903(3):480-94. PubMed ID: 2444259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential.
    Gross E; Bedlack RS; Loew LM
    Biophys J; 1994 Jul; 67(1):208-16. PubMed ID: 7918989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluctuations during growth of the plasma membrane H(+)-ATPase activity of Saccharomyces cerevisiae and Schizosaccharomyces pombe.
    Nso E; Goffeau A; Dufour JP
    Folia Microbiol (Praha); 2002; 47(4):401-6. PubMed ID: 12422517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmembrane proton-motive potential of Spiroplasma floricola.
    Schummer U; Schiefer HG
    FEBS Lett; 1987 Nov; 224(1):79-82. PubMed ID: 2890538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological study with oxonol VI of passive NO3- transport by isolated plant root plasma membrane.
    Pouliquin P; Grouzis J; Gibrat R
    Biophys J; 1999 Jan; 76(1 Pt 1):360-73. PubMed ID: 9876148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convenient fluorescence-based methods to measure membrane potential and intracellular pH in the Archaeon Methanobacterium thermoautotrophicum.
    de Poorter LM; Keltjens JT
    J Microbiol Methods; 2001 Nov; 47(2):233-41. PubMed ID: 11576687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrogenic transport by the Enterococcus hirae ATPase.
    Apell HJ; Solioz M
    Biochim Biophys Acta; 1990 Jun; 1017(3):221-8. PubMed ID: 2164846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single point mutations in various domains of a plant plasma membrane H(+)-ATPase expressed in Saccharomyces cerevisiae increase H(+)-pumping and permit yeast growth at low pH.
    Morsomme P; de Kerchove d'Exaerde A; De Meester S; Thinès D; Goffeau A; Boutry M
    EMBO J; 1996 Oct; 15(20):5513-26. PubMed ID: 8896445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro study of passive nitrate transport by native and reconstituted plasma membrane vesicles from corn root cells.
    Grouzis JP; Pouliquin P; Rigaud J; Grignon C; Gibrat R
    Biochim Biophys Acta; 1997 Apr; 1325(2):329-42. PubMed ID: 9168158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.