These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12507791)

  • 1. CoLD: a versatile detection system for colorectal lesions in endoscopy video-frames.
    Maroulis DE; Iakovidis DK; Karkanis SA; Karras DA
    Comput Methods Programs Biomed; 2003 Feb; 70(2):151-66. PubMed ID: 12507791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future directions.
    Ahmad OF; Soares AS; Mazomenos E; Brandao P; Vega R; Seward E; Stoyanov D; Chand M; Lovat LB
    Lancet Gastroenterol Hepatol; 2019 Jan; 4(1):71-80. PubMed ID: 30527583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stool detection in colonoscopy videos.
    Hwang S; Oh J; Tavanapong W; Wong J; de Groen PC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3004-7. PubMed ID: 19163338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Classification of Diminutive Colorectal Polyps Using Computer-Aided Analysis.
    Chen PJ; Lin MC; Lai MJ; Lin JC; Lu HH; Tseng VS
    Gastroenterology; 2018 Feb; 154(3):568-575. PubMed ID: 29042219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Artificial Intelligence Will Impact Colonoscopy and Colorectal Screening.
    Shung DL; Byrne MF
    Gastrointest Endosc Clin N Am; 2020 Jul; 30(3):585-595. PubMed ID: 32439090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of computer-aided diagnosis based on narrow-band imaging endocytoscopy for diagnosing colorectal lesions: comparison with experts.
    Misawa M; Kudo SE; Mori Y; Takeda K; Maeda Y; Kataoka S; Nakamura H; Kudo T; Wakamura K; Hayashi T; Katagiri A; Baba T; Ishida F; Inoue H; Nimura Y; Oda M; Mori K
    Int J Comput Assist Radiol Surg; 2017 May; 12(5):757-766. PubMed ID: 28247214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of small bowel tumors in capsule endoscopy frames using texture analysis based on the discrete wavelet transform.
    Barbosa DJ; Ramos J; Lima CS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3012-5. PubMed ID: 19163340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-aided tumor detection in endoscopic video using color wavelet features.
    Karkanis SA; Iakovidis DK; Maroulis DE; Karras DA; Tzivras M
    IEEE Trans Inf Technol Biomed; 2003 Sep; 7(3):141-52. PubMed ID: 14518727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility and accuracy of confocal endomicroscopy in comparison with narrow-band imaging and chromoendoscopy for the differentiation of colorectal lesions.
    Kuiper T; van den Broek FJ; van Eeden S; Fockens P; Dekker E
    Am J Gastroenterol; 2012 Apr; 107(4):543-50. PubMed ID: 22433922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Addressing priority challenges in the detection and assessment of colorectal polyps from capsule endoscopy and colonoscopy in colorectal cancer screening using machine learning.
    Blanes-Vidal V; Baatrup G; Nadimi ES
    Acta Oncol; 2019; 58(sup1):S29-S36. PubMed ID: 30836800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of novel LCI CAD EYE system for real time detection of colon polyps.
    Neumann H; Kreft A; Sivanathan V; Rahman F; Galle PR
    PLoS One; 2021; 16(8):e0255955. PubMed ID: 34437563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Deep Learning for Early Screening of Colorectal Precancerous Lesions under White Light Endoscopy.
    Gao J; Guo Y; Sun Y; Qu G
    Comput Math Methods Med; 2020; 2020():8374317. PubMed ID: 32952602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of Informative Frames in Colonoscopy Videos Using Convolutional Neural Networks with Binarized Weights.
    Akbari M; Mohrekesh M; Rafiei S; Reza Soroushmehr SM; Karimi N; Samavi S; Najarian K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():65-68. PubMed ID: 30440342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distributed computing methodology for training neural networks in an image-guided diagnostic application.
    Plagianakos VP; Magoulas GD; Vrahatis MN
    Comput Methods Programs Biomed; 2006 Mar; 81(3):228-35. PubMed ID: 16476503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring Deep Learning and Transfer Learning for Colonic Polyp Classification.
    Ribeiro E; Uhl A; Wimmer G; Häfner M
    Comput Math Methods Med; 2016; 2016():6584725. PubMed ID: 27847543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience.
    Komeda Y; Handa H; Watanabe T; Nomura T; Kitahashi M; Sakurai T; Okamoto A; Minami T; Kono M; Arizumi T; Takenaka M; Hagiwara S; Matsui S; Nishida N; Kashida H; Kudo M
    Oncology; 2017; 93 Suppl 1():30-34. PubMed ID: 29258081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of virtual and conventional colonoscopy for the detection of colorectal polyps.
    Novis B
    Gastrointest Endosc; 2000 Nov; 52(5):700-1. PubMed ID: 11203438
    [No Abstract]   [Full Text] [Related]  

  • 18. CT colonoscopy of colorectal neoplasms: two-dimensional and three-dimensional virtual-reality techniques with colonoscopic correlation.
    Royster AP; Fenlon HM; Clarke PD; Nunes DP; Ferrucci JT
    AJR Am J Roentgenol; 1997 Nov; 169(5):1237-42. PubMed ID: 9353434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-supervised representation learning using feature pyramid siamese networks for colorectal polyp detection.
    Gan T; Jin Z; Yu L; Liang X; Zhang H; Ye X
    Sci Rep; 2023 Dec; 13(1):21655. PubMed ID: 38066207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Virtual colonoscopy].
    Laméris JS; Stoker J
    Ned Tijdschr Geneeskd; 2000 Jan; 144(2):60-4. PubMed ID: 10674103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.