These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12507869)

  • 1. Emissions modeling of fluidised bed co-combustion of poultry litter and peat.
    Henihan AM; Leahy MJ; Leahy JJ; Cummins E; Kelleher BP
    Bioresour Technol; 2003 May; 87(3):289-94. PubMed ID: 12507869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring and dispersion modelling of emissions from the fluidised bed combustion of poultry litter.
    Henihan AM; Kelleher BP; Leahy MJ; Cummins E; Leahy JJ
    Environ Monit Assess; 2003 Jul; 85(3):239-55. PubMed ID: 12841688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersion modelling and measurement of emissions from the co-combustion of meat and bone meal with peat in a fluidised bed.
    Cummins EJ; McDonnell KP; Ward SM
    Bioresour Technol; 2006 May; 97(7):903-13. PubMed ID: 15961309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combustion studies of high moisture content waste in a fluidised bed.
    Suksankraisorn K; Patumsawad S; Fungtammasan B
    Waste Manag; 2003; 23(5):433-9. PubMed ID: 12893016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of combustion product emission factors of unvented kerosene heaters.
    Woodring JL; Duffy TL; Davis JT; Bechtold RR
    Am Ind Hyg Assoc J; 1985 Jul; 46(7):350-6. PubMed ID: 3880188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emissions variability processor (EMVAP): design, evaluation, and application.
    Paine R; Szembek C; Heinold D; Knipping E; Kumar N
    J Air Waste Manag Assoc; 2014 Dec; 64(12):1390-402. PubMed ID: 25562935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-combustion performance of poultry wastes and natural gas in the advanced Swirling Fluidized Bed Combustor (SFBC).
    Zhu S; Lee SW
    Waste Manag; 2005; 25(5):511-8. PubMed ID: 15925760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of combustion products of medical waste incinerators in Alexandria.
    Zakaria AM; Labib OA; Mohamed MG; El-Shall WI; Hussein AH
    J Egypt Public Health Assoc; 2005; 80(3-4):405-31. PubMed ID: 16900616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emissions from the burning of vegetative debris in air curtain destructors.
    Miller CA; Lemieux PM
    J Air Waste Manag Assoc; 2007 Aug; 57(8):959-67. PubMed ID: 17824286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A framework for emissions source apportionment in industrial areas: MM5/CALPUFF in a near-field application.
    Ghannam K; El-Fadel M
    J Air Waste Manag Assoc; 2013 Feb; 63(2):190-204. PubMed ID: 23472303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gaseous and particulate emissions from a DC arc melter.
    Overcamp TJ; Speer MP; Griner SJ; Cash DM
    J Air Waste Manag Assoc; 2003 Jan; 53(1):13-20. PubMed ID: 12568249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the impact of SO₂ and NO₂ emissions on the ambient air-quality in the Çan-Bayramiç region of northwest Turkey during 2007-2008.
    Ozkurt N; Sari D; Akalin N; Hilmioglu B
    Sci Total Environ; 2013 Jul; 456-457():254-66. PubMed ID: 23602979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-combustion of waste from olive oil production with coal in a fluidised bed.
    Cliffe KR; Patumsawad S
    Waste Manag; 2001; 21(1):49-53. PubMed ID: 11150132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of emissions from domestic heating in residential areas of İzmir, Turkey and assessment of the impact on local/regional air-quality.
    Sari D; Bayram A
    Sci Total Environ; 2014 Aug; 488-489():429-36. PubMed ID: 24315026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Brooklyn traffic real-time ambient pollutant penetration and environmental dispersion (B-TRAPPED) field study methodology.
    Richmond-Bryant J; Hahn I; Fortune CR; Rodes CE; Portzer JW; Lee S; Wiener RW; Smith LA; Wheeler M; Seagraves J; Stein M; Eisner AD; Brixey LA; Drake-Richman ZE; Brouwer LH; Ellenson WD; Baldauf R
    J Environ Monit; 2009 Dec; 11(12):2122-35. PubMed ID: 20024009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Qualitative and quantitative characteristics of atmospheric air pollution in an industrial city].
    Dautov FF; Galliamov AB; Khakimova RF; Kamalova SR
    Gig Sanit; 1990 Jun; (6):10-2. PubMed ID: 2145199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the spatial distribution of SO2 and NOx emissions in Ireland.
    de Kluizenaar Y; Aherne J; Farrell EP
    Environ Pollut; 2001; 112(2):171-82. PubMed ID: 11234533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Burden of disease attributable to air pollutants from municipal solid waste incinerators in Seoul, Korea: a source-specific approach for environmental burden of disease.
    Kim YM; Kim JW; Lee HJ
    Sci Total Environ; 2011 May; 409(11):2019-28. PubMed ID: 21420146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air quality assessment for Portugal.
    Monteiro A; Miranda AI; Borrego C; Vautard R
    Sci Total Environ; 2007 Feb; 373(1):22-31. PubMed ID: 17207847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.