BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 12508050)

  • 1. Dihydropyridine receptors as voltage sensors for a depolarization-evoked, IP3R-mediated, slow calcium signal in skeletal muscle cells.
    Araya R; Liberona JL; Cárdenas JC; Riveros N; Estrada M; Powell JA; Carrasco MA; Jaimovich E
    J Gen Physiol; 2003 Jan; 121(1):3-16. PubMed ID: 12508050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow calcium signals after tetanic electrical stimulation in skeletal myotubes.
    Eltit JM; Hidalgo J; Liberona JL; Jaimovich E
    Biophys J; 2004 May; 86(5):3042-51. PubMed ID: 15111418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+-dependent excitation-contraction coupling triggered by the heterologous cardiac/brain DHPR beta2a-subunit in skeletal myotubes.
    Sheridan DC; Carbonneau L; Ahern CA; Nataraj P; Coronado R
    Biophys J; 2003 Dec; 85(6):3739-57. PubMed ID: 14645065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of triads without the dihydropyridine receptor alpha subunits in cell lines from dysgenic skeletal muscle.
    Powell JA; Petherbridge L; Flucher BE
    J Cell Biol; 1996 Jul; 134(2):375-87. PubMed ID: 8707823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triad proteins and intracellular Ca2+ transients during development of human skeletal muscle cells in aneural and innervated cultures.
    Tanaka H; Furuya T; Kameda N; Kobayashi T; Mizusawa H
    J Muscle Res Cell Motil; 2000; 21(6):507-26. PubMed ID: 11206130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium transients in 1B5 myotubes lacking ryanodine receptors are related to inositol trisphosphate receptors.
    Estrada M; Cárdenas C; Liberona JL; Carrasco MA; Mignery GA; Allen PD; Jaimovich E
    J Biol Chem; 2001 Jun; 276(25):22868-74. PubMed ID: 11301324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triad formation: organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro.
    Flucher BE; Andrews SB; Fleischer S; Marks AR; Caswell A; Powell JA
    J Cell Biol; 1993 Dec; 123(5):1161-74. PubMed ID: 8245124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The skeletal L-type Ca(2+) current is a major contributor to excitation-coupled Ca(2+) entry.
    Bannister RA; Pessah IN; Beam KG
    J Gen Physiol; 2009 Jan; 133(1):79-91. PubMed ID: 19114636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+-induced Ca2+ release in Chinese hamster ovary (CHO) cells co-expressing dihydropyridine and ryanodine receptors.
    Suda N; Franzius D; Fleig A; Nishimura S; Bödding M; Hoth M; Takeshima H; Penner R
    J Gen Physiol; 1997 May; 109(5):619-31. PubMed ID: 9154908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between the dihydropyridine receptor Ca2+ channel beta-subunit and ryanodine receptor type 1 strengthens excitation-contraction coupling.
    Cheng W; Altafaj X; Ronjat M; Coronado R
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19225-30. PubMed ID: 16357209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ryanodine modification of RyR1 retrogradely affects L-type Ca(2+) channel gating in skeletal muscle.
    Bannister RA; Beam KG
    J Muscle Res Cell Motil; 2009; 30(5-6):217-23. PubMed ID: 19802526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The II-III loop of the skeletal muscle dihydropyridine receptor is responsible for the Bi-directional coupling with the ryanodine receptor.
    Grabner M; Dirksen RT; Suda N; Beam KG
    J Biol Chem; 1999 Jul; 274(31):21913-9. PubMed ID: 10419512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation of charge movement from calcium release and calcium current in skeletal myotubes by gabapentin.
    Alden KJ; García J
    Am J Physiol Cell Physiol; 2002 Sep; 283(3):C941-9. PubMed ID: 12176750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of calcium permeation in dihydropyridine receptor function. Insights into channel gating and excitation-contraction coupling.
    Dirksen RT; Beam KG
    J Gen Physiol; 1999 Sep; 114(3):393-403. PubMed ID: 10469729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-dependent action potentials induced by brevetoxin-3 trigger both IP3 increase and intracellular Ca2+ release in rat skeletal myotubes.
    Liberona JL; Cárdenas JC; Reyes R; Hidalgo J; Molgó J; Jaimovich E
    Cell Calcium; 2008 Sep; 44(3):289-97. PubMed ID: 18276006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prolonged depolarization promotes fast gating kinetics of L-type Ca2+ channels in mouse skeletal myotubes.
    O'Connell KM; Dirksen RT
    J Physiol; 2000 Dec; 529 Pt 3(Pt 3):647-59. PubMed ID: 11118495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Truncation of the carboxyl terminus of the dihydropyridine receptor beta1a subunit promotes Ca2+ dependent excitation-contraction coupling in skeletal myotubes.
    Sheridan DC; Cheng W; Ahern CA; Mortenson L; Alsammarae D; Vallejo P; Coronado R
    Biophys J; 2003 Jan; 84(1):220-37. PubMed ID: 12524277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium waves induced by hypertonic solutions in intact frog skeletal muscle fibres.
    Chawla S; Skepper JN; Hockaday AR; Huang CL
    J Physiol; 2001 Oct; 536(Pt 2):351-9. PubMed ID: 11600671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IP(3) receptors, IP(3) transients, and nucleus-associated Ca(2+) signals in cultured skeletal muscle.
    Jaimovich E; Reyes R; Liberona JL; Powell JA
    Am J Physiol Cell Physiol; 2000 May; 278(5):C998-C1010. PubMed ID: 10794674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IP(3) receptor function and localization in myotubes: an unexplored Ca(2+) signaling pathway in skeletal muscle.
    Powell JA; Carrasco MA; Adams DS; Drouet B; Rios J; Müller M; Estrada M; Jaimovich E
    J Cell Sci; 2001 Oct; 114(Pt 20):3673-83. PubMed ID: 11707519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.