BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12508220)

  • 1. Xenopus muscle development: from primary to secondary myogenesis.
    Chanoine C; Hardy S
    Dev Dyn; 2003 Jan; 226(1):12-23. PubMed ID: 12508220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of myogenic regulatory factors during muscle development of Xenopus: myogenin mRNA accumulation is limited strictly to secondary myogenesis.
    Nicolas N; Gallien CL; Chanoine C
    Dev Dyn; 1998 Nov; 213(3):309-21. PubMed ID: 9825866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis.
    Noden DM; Marcucio R; Borycki AG; Emerson CP
    Dev Dyn; 1999 Oct; 216(2):96-112. PubMed ID: 10536051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis.
    Grimaldi A; Tettamanti G; Martin BL; Gaffield W; Pownall ME; Hughes SM
    Development; 2004 Jul; 131(14):3249-62. PubMed ID: 15201218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of XMyoD or XMyf5 in Xenopus embryos induces the formation of enlarged myotomes through recruitment of cells of nonsomitic lineage.
    Ludolph DC; Neff AW; Mescher AL; Malacinski GM; Parker MA; Smith RC
    Dev Biol; 1994 Nov; 166(1):18-33. PubMed ID: 7525388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of somitic expression of tenascin in Xenopus embryos by myogenic factors and Brachyury.
    Umbhauer M; Riou JF; Smith JC; Boucaut JC
    Dev Dyn; 1994 Aug; 200(4):269-77. PubMed ID: 7527682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hedgehog signalling is required for maintenance of myf5 and myoD expression and timely terminal differentiation in zebrafish adaxial myogenesis.
    Coutelle O; Blagden CS; Hampson R; Halai C; Rigby PW; Hughes SM
    Dev Biol; 2001 Aug; 236(1):136-50. PubMed ID: 11456450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MyoD and Myf-5 define the specification of musculature of distinct embryonic origin.
    Kablar B; Asakura A; Krastel K; Ying C; May LL; Goldhamer DJ; Rudnicki MA
    Biochem Cell Biol; 1998; 76(6):1079-91. PubMed ID: 10392718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of muscle genes without myogenesis by ectopic expression of MyoD in frog embryo cells.
    Hopwood ND; Gurdon JB
    Nature; 1990 Sep; 347(6289):197-200. PubMed ID: 1697650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ectopic Myf5 or MyoD prevents the neuronal differentiation program in addition to inducing skeletal muscle differentiation, in the chick neural tube.
    Delfini MC; Duprez D
    Development; 2004 Feb; 131(4):713-23. PubMed ID: 14724123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice.
    Kassar-Duchossoy L; Gayraud-Morel B; Gomès D; Rocancourt D; Buckingham M; Shinin V; Tajbakhsh S
    Nature; 2004 Sep; 431(7007):466-71. PubMed ID: 15386014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T-box binding site mediates the dorsal activation of myf-5 in Xenopus gastrula embryos.
    Lin GF; Geng X; Chen Y; Qu B; Wang F; Hu R; Ding X
    Dev Dyn; 2003 Jan; 226(1):51-8. PubMed ID: 12508224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of facial muscle development by MyoR and capsulin.
    Lu JR; Bassel-Duby R; Hawkins A; Chang P; Valdez R; Wu H; Gan L; Shelton JM; Richardson JA; Olson EN
    Science; 2002 Dec; 298(5602):2378-81. PubMed ID: 12493912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myogenic regulatory factors Myf5 and Myod function distinctly during craniofacial myogenesis of zebrafish.
    Lin CY; Yung RF; Lee HC; Chen WT; Chen YH; Tsai HJ
    Dev Biol; 2006 Nov; 299(2):594-608. PubMed ID: 17007832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MAP kinase converts MyoD into an instructive muscle differentiation factor in Xenopus.
    Zetser A; Frank D; Bengal E
    Dev Biol; 2001 Dec; 240(1):168-81. PubMed ID: 11784054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene activation in the amphibian mesoderm.
    Hopwood ND; Gurdon JB
    Dev Suppl; 1991; 1():95-104. PubMed ID: 1742502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myogenic regulatory factors: redundant or specific functions? Lessons from Xenopus.
    Chanoine C; Della Gaspera B; Charbonnier F
    Dev Dyn; 2004 Dec; 231(4):662-70. PubMed ID: 15499556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repression of XMyoD expression and myogenesis by Xhairy-1 in Xenopus early embryo.
    Umbhauer M; Boucaut JC; Shi DL
    Mech Dev; 2001 Nov; 109(1):61-8. PubMed ID: 11677053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development.
    Brent AE; Braun T; Tabin CJ
    Development; 2005 Feb; 132(3):515-28. PubMed ID: 15634692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of initiation and early events for muscle development in the Xenopus limb bud.
    Satoh A; Sakamaki K; Ide H; Tamura K
    Dev Dyn; 2005 Dec; 234(4):846-57. PubMed ID: 16245333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.