These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 12508277)

  • 1. How the community effect orchestrates muscle differentiation.
    Buckingham M
    Bioessays; 2003 Jan; 25(1):13-6. PubMed ID: 12508277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dynamic requirement for community interactions during Xenopus myogenesis.
    Standley HJ; Zorn AM; Gurdon JB
    Int J Dev Biol; 2002 May; 46(3):279-83. PubMed ID: 12068948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p38 MAP kinase regulates the expression of XMyf5 and affects distinct myogenic programs during Xenopus development.
    Keren A; Bengal E; Frank D
    Dev Biol; 2005 Dec; 288(1):73-86. PubMed ID: 16248994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nodal and Fgf pathways interact through a positive regulatory loop and synergize to maintain mesodermal cell populations.
    Mathieu J; Griffin K; Herbomel P; Dickmeis T; Strähle U; Kimelman D; Rosa FM; Peyriéras N
    Development; 2004 Feb; 131(3):629-41. PubMed ID: 14711879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncommitted Xenopus blastula cells can be directed to uniform muscle gene expression by gradient interpretation and a community effect.
    Standley HJ; Gurdon JB
    Int J Dev Biol; 2002 Dec; 46(8):993-8. PubMed ID: 12533022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The community effect in Xenopus myogenesis is promoted by dorsalizing factors.
    Carnac G; Gurdon JB
    Int J Dev Biol; 1997 Jun; 41(3):521-4. PubMed ID: 9240569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus.
    Fletcher RB; Baker JC; Harland RM
    Development; 2006 May; 133(9):1703-14. PubMed ID: 16554360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the cell cycle is required for convergent extension of the paraxial mesoderm during Xenopus neurulation.
    Leise WF; Mueller PR
    Development; 2004 Apr; 131(8):1703-15. PubMed ID: 15084456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis.
    Grimaldi A; Tettamanti G; Martin BL; Gaffield W; Pownall ME; Hughes SM
    Development; 2004 Jul; 131(14):3249-62. PubMed ID: 15201218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling segmentation to axis formation.
    Dubrulle J; Pourquié O
    Development; 2004 Dec; 131(23):5783-93. PubMed ID: 15539483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposing FGF and retinoid pathways: a signalling switch that controls differentiation and patterning onset in the extending vertebrate body axis.
    Diez del Corral R; Storey KG
    Bioessays; 2004 Aug; 26(8):857-69. PubMed ID: 15273988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xenopus muscle development: from primary to secondary myogenesis.
    Chanoine C; Hardy S
    Dev Dyn; 2003 Jan; 226(1):12-23. PubMed ID: 12508220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antero-posterior tissue polarity links mesoderm convergent extension to axial patterning.
    Ninomiya H; Elinson RP; Winklbauer R
    Nature; 2004 Jul; 430(6997):364-7. PubMed ID: 15254540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specification of vertebral identity is coupled to Notch signalling and the segmentation clock.
    Cordes R; Schuster-Gossler K; Serth K; Gossler A
    Development; 2004 Mar; 131(6):1221-33. PubMed ID: 14960495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrinsic versus intrinsic cues in avian paraxial mesoderm patterning and differentiation.
    Bothe I; Ahmed MU; Winterbottom FL; von Scheven G; Dietrich S
    Dev Dyn; 2007 Sep; 236(9):2397-409. PubMed ID: 17654605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An essential role for Fgfs in endodermal pouch formation influences later craniofacial skeletal patterning.
    Crump JG; Maves L; Lawson ND; Weinstein BM; Kimmel CB
    Development; 2004 Nov; 131(22):5703-16. PubMed ID: 15509770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The secreted serine protease xHtrA1 stimulates long-range FGF signaling in the early Xenopus embryo.
    Hou S; Maccarana M; Min TH; Strate I; Pera EM
    Dev Cell; 2007 Aug; 13(2):226-41. PubMed ID: 17681134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis.
    Kelly RG; Jerome-Majewska LA; Papaioannou VE
    Hum Mol Genet; 2004 Nov; 13(22):2829-40. PubMed ID: 15385444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinoic acid activates myogenesis in vivo through Fgf8 signalling.
    Hamade A; Deries M; Begemann G; Bally-Cuif L; Genêt C; Sabatier F; Bonnieu A; Cousin X
    Dev Biol; 2006 Jan; 289(1):127-40. PubMed ID: 16316642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The regulation of mesodermal progenitor cell commitment to somitogenesis subdivides the zebrafish body musculature into distinct domains.
    Szeto DP; Kimelman D
    Genes Dev; 2006 Jul; 20(14):1923-32. PubMed ID: 16847349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.