BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 12508282)

  • 1. Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators.
    Hoeberichts FA; Woltering EJ
    Bioessays; 2003 Jan; 25(1):47-57. PubMed ID: 12508282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell death and organ development in plants.
    Rogers HJ
    Curr Top Dev Biol; 2005; 71():225-61. PubMed ID: 16344107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmed cell death in plants: distinguishing between different modes.
    Reape TJ; Molony EM; McCabe PF
    J Exp Bot; 2008; 59(3):435-44. PubMed ID: 18256053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death.
    Gechev TS; Van Breusegem F; Stone JM; Denev I; Laloi C
    Bioessays; 2006 Nov; 28(11):1091-101. PubMed ID: 17041898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of nitric oxide in actin depolymerization and programmed cell death induced by fusicoccin in sycamore (Acer pseudoplatanus) cultured cells.
    Malerba M; Contran N; Tonelli M; Crosti P; Cerana R
    Physiol Plant; 2008 Jun; 133(2):449-57. PubMed ID: 18346076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmed cell death, mitochondria and the plant hypersensitive response.
    Lam E; Kato N; Lawton M
    Nature; 2001 Jun; 411(6839):848-53. PubMed ID: 11459068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat stress: an inducer of programmed cell death in Chlorella saccharophila.
    Zuppini A; Andreoli C; Baldan B
    Plant Cell Physiol; 2007 Jul; 48(7):1000-9. PubMed ID: 17567640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caspase-independent cell death by low concentrations of nitric oxide in PC12 cells: involvement of cytochrome C oxidase inhibition and the production of reactive oxygen species in mitochondria.
    Yuyama K; Yamamoto H; Nishizaki I; Kato T; Sora I; Yamamoto T
    J Neurosci Res; 2003 Aug; 73(3):351-63. PubMed ID: 12868069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmed cell death in C. elegans, mammals and plants.
    Lord CE; Gunawardena AH
    Eur J Cell Biol; 2012 Aug; 91(8):603-13. PubMed ID: 22512890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox regulation in plant programmed cell death.
    De Pinto MC; Locato V; De Gara L
    Plant Cell Environ; 2012 Feb; 35(2):234-44. PubMed ID: 21711357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apoptotic-like regulation of programmed cell death in plants.
    Reape TJ; McCabe PF
    Apoptosis; 2010 Mar; 15(3):249-56. PubMed ID: 20094801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast programmed cell death: an intricate puzzle.
    Ludovico P; Madeo F; Silva M
    IUBMB Life; 2005 Mar; 57(3):129-35. PubMed ID: 16036575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development.
    Kim KS; Min JY; Dickman MB
    Mol Plant Microbe Interact; 2008 May; 21(5):605-12. PubMed ID: 18393620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell death signal by glycine- and proline-rich plant glycoprotein is transferred from cytochrome c and nuclear factor kappa B to caspase 3 in Hep3B cells.
    Lee SJ; Lim KT
    J Nutr Biochem; 2008 Mar; 19(3):166-74. PubMed ID: 17588735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N,N-dimethyl phytosphingosine induces caspase-8-dependent cytochrome c release and apoptosis through ROS generation in human leukemia cells.
    Kim BM; Choi YJ; Han Y; Yun YS; Hong SH
    Toxicol Appl Pharmacol; 2009 Aug; 239(1):87-97. PubMed ID: 19481559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Camptothecin induced mitochondrial dysfunction leading to programmed cell death in unicellular hemoflagellate Leishmania donovani.
    Sen N; Das BB; Ganguly A; Mukherjee T; Tripathi G; Bandyopadhyay S; Rakshit S; Sen T; Majumder HK
    Cell Death Differ; 2004 Aug; 11(8):924-36. PubMed ID: 15118764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3,3'-diindolylmethane through inhibition of F0F1-ATP synthase in unicellular protozoan parasite Leishmania donovani.
    Roy A; Ganguly A; BoseDasgupta S; Das BB; Pal C; Jaisankar P; Majumder HK
    Mol Pharmacol; 2008 Nov; 74(5):1292-307. PubMed ID: 18703668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative microarray analysis of programmed cell death induced by proteasome malfunction and hypersensitive response in plants.
    Kim M; Lee S; Park K; Jeong EJ; Ryu CM; Choi D; Pai HS
    Biochem Biophys Res Commun; 2006 Apr; 342(2):514-21. PubMed ID: 16487931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pepper calmodulin gene CaCaM1 is involved in reactive oxygen species and nitric oxide generation required for cell death and the defense response.
    Choi HW; Lee DH; Hwang BK
    Mol Plant Microbe Interact; 2009 Nov; 22(11):1389-400. PubMed ID: 19810808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants.
    Balk J; Leaver CJ; McCabe PF
    FEBS Lett; 1999 Dec; 463(1-2):151-4. PubMed ID: 10601657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.