These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 12508883)

  • 41. Genome sequence of n-alkane-degrading Hydrocarboniphaga effusa strain AP103T (ATCC BAA-332T).
    Chang HK; Zylstra GJ; Chae JC
    J Bacteriol; 2012 Sep; 194(18):5120. PubMed ID: 22933753
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Epiphytic marine pigmented bacteria: A prospective source of natural antioxidants.
    Pawar R; Mohandass C; Sivaperumal E; Sabu E; Rajasabapathy R; Jagtap T
    Braz J Microbiol; 2015 Mar; 46(1):29-39. PubMed ID: 26221086
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus.
    Ferreira AC; Nobre MF; Moore E; Rainey FA; Battista JR; da Costa MS
    Extremophiles; 1999 Nov; 3(4):235-8. PubMed ID: 10591012
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative Genomic Analysis of Pseudoxanthomonas sp. X-1, a Bromoxynil Octanoate-Degrading Bacterium, and Its Related Type Strains.
    Ruan Z; Cao W; Zhu J; Yang B; Jiang J; Chen C; Xu X
    Curr Microbiol; 2022 Jan; 79(2):65. PubMed ID: 35059857
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative Genomic Analysis of a Novel Strain of Taiwan Hot-Spring Cyanobacterium
    Cheng YI; Chou L; Chiu YF; Hsueh HT; Kuo CH; Chu HA
    Front Microbiol; 2020; 11():82. PubMed ID: 32082292
    [No Abstract]   [Full Text] [Related]  

  • 46. Fatty acids of a non-pigmented, thermophilic bacterium similar to Thermus aquaticus.
    Jackson TJ; Ramaley RF; Meinschein WG
    Arch Mikrobiol; 1973; 88(2):127-33. PubMed ID: 4684074
    [No Abstract]   [Full Text] [Related]  

  • 47. Whole-Genome Sequence of the Novel Rubrobacter taiwanensis Strain Yellowstone, Isolated from Yellowstone National Park.
    Freed S; Ramaley RF; Kyndt JA
    Microbiol Resour Announc; 2019 Apr; 8(16):. PubMed ID: 31000556
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pseudoxanthomonas spadix sp. nov., isolated from oil-contaminated soil.
    Young CC; Ho MJ; Arun AB; Chen WM; Lai WA; Shen FT; Rekha PD; Yassin AF
    Int J Syst Evol Microbiol; 2007 Aug; 57(Pt 8):1823-1827. PubMed ID: 17684265
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genomic data resource of type strains of genus
    Bansal K; Kumar S; Patil PP; Sharma S; Patil PB
    Data Brief; 2022 Jun; 42():108145. PubMed ID: 35515983
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pseudoxanthomonas beigongshangi sp. nov., a novel bacteria with predicted nitrite and nitrate reduce ability isolated from pit mud of Baijiu.
    Sun Z; Dai F; Yan Y; Guo L; Gu H; Xu J; Ren Q
    Antonie Van Leeuwenhoek; 2021 Aug; 114(8):1307-1314. PubMed ID: 34117563
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Source Community and Assembly Processes Affect the Efficiency of Microbial Microcystin Degradation on Drinking Water Filtration Membranes.
    Silva MOD; Desmond P; Derlon N; Morgenroth E; Pernthaler J
    Front Microbiol; 2019; 10():843. PubMed ID: 31057530
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Petroleum hydrocarbon rich oil refinery sludge of North-East India harbours anaerobic, fermentative, sulfate-reducing, syntrophic and methanogenic microbial populations.
    Roy A; Sar P; Sarkar J; Dutta A; Sarkar P; Gupta A; Mohapatra B; Pal S; Kazy SK
    BMC Microbiol; 2018 Oct; 18(1):151. PubMed ID: 30348104
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Significant enhancement of nitrous oxide energy yields from wastewater achieved by bioaugmentation with a recombinant strain of Pseudomonas aeruginosa.
    Lin Z; Sun D; Dang Y; Holmes DE
    Sci Rep; 2018 Aug; 8(1):11916. PubMed ID: 30093706
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Taxonomy and physiology of Pseudoxanthomonas arseniciresistens sp. nov., an arsenate and nitrate-reducing novel gammaproteobacterium from arsenic contaminated groundwater, India.
    Mohapatra B; Sar P; Kazy SK; Maiti MK; Satyanarayana T
    PLoS One; 2018; 13(3):e0193718. PubMed ID: 29558470
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cellulosic ethanol production by natural bacterial consortia is enhanced by Pseudoxanthomonas taiwanensis.
    Du R; Yan J; Li S; Zhang L; Zhang S; Li J; Zhao G; Qi P
    Biotechnol Biofuels; 2015; 8(1):10. PubMed ID: 25648981
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of the catalytic triad of family S46 exopeptidases, closely related to clan PA endopeptidases.
    Suzuki Y; Sakamoto Y; Tanaka N; Okada H; Morikawa Y; Ogasawara W
    Sci Rep; 2014 Mar; 4():4292. PubMed ID: 24598890
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pseudoxanthomonas jiangsuensis sp. nov., a DDT-degrading bacterium isolated from a long-term DDT-polluted soil.
    Wang GL; Bi M; Liang B; Jiang JD; Li SP
    Curr Microbiol; 2011 Jun; 62(6):1760-6. PubMed ID: 21445548
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pseudoxanthomonas icgebensis sp. nov., isolated from the midgut of Anopheles stephensi field-collected larvae.
    Rani A; Sharma A; Adak T; Bhatnagar RK
    J Microbiol; 2010 Oct; 48(5):601-6. PubMed ID: 21046337
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carbon utilization profiles of bacteria colonizing the headbox water of two paper machines in a Canadian mill.
    Kashama J; Prince V; Simao-Beaunoir AM; Beaulieu C
    J Ind Microbiol Biotechnol; 2009 Mar; 36(3):391-9. PubMed ID: 19137341
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.